Hi guys,
Is it possible to have a single protocol to analyze differential gene expression for experiments of different design? A dataset like GDS3715 in GEO, for example, has both levels and sub-levels (agents). One of the levels, say insulin resistant, is divided into sub-levels treated and untreated samples. GDS162 on the other hand is grouped into just two levels(no sub-levels). Running res = sam(gdseset, gdseset$disease.state)works fine for data with just levels. res = sam(gdseset, gdseset$agent) understandably groups everything into 2 classes, treated and untreated, which doesn't make much sense, to me anyway. And using res = sam(gdseset, gdseset$disease.state$agent) doesn't work. Is there a way to possibly identify, correctly assign and pair up such sub-level data if and when the script comes across it?
Thanks.
Thanks again, Sean. The datasets are extracted from GEO, so the experiments are not necessarily performed on thesame platform or done in thesame laboratory.
@Sean.Thanks again, Sean. The datasets are extracted from GEO, so the experiments are not necessarily performed on thesame platform or done in thesame laboratory.