I have personally not been very impressed with the transcript-level qualifications, especially with RNA-Seq data with very uneven coverage (which is almost all the data I have directly worked with, although I've heard there are newer protocols to assist with the problem of uneven coverage). For this reason, I would tend to stick towards analyzing differential splicing events (exon skipping, intron retention, etc.) with MATS, MISO, etc. over whole transcript quantification (and I tend to use gene-level mRNA quantification rather than transcript-level mRNA quantification)
That said, you could take the transcript abundances from cufflinks, RSEM, etc. and treat them like a normal, gene-level differential expression experiment (using limma, sRAP, etc.). I don't think this a great solution, but I don't know if it is really much worse than using cuffdiff.
To get an idea about the robustness of gene-level vs. transcript-level differential expression would look like, you can see Figure 5 in the following paper (although it may not be a completely fair comparison because the gene-level and transcript-level expression will often be correlated, and discrepancies between transcript abundances shouldn't be expected for all genes):
http://bioinfo.aizeonpublishers.net/content/2013/6/bioinfo285-292.pdf
HI Charles,
Could you explain me the difference between gene-level mRNA quantification and transcript-level mRNA quantification
The precise difference may vary depending what tool you use, but gene-level quantification will give you a single expression value per gene (associated with a gene symbol, most likely). In contrast, transcript-level quantification will give you expression values for each isoform of a gene, and this can only be calculated when using a tool that assigns reads across isoforms for a given gene (often associated with a RefSeq accession number, but that would obviously depend on what reference you used to define your genes).
I would define the gene-level quantification as the sum of reads assigned to exons present in any of the isoforms for a gene, but I'm not sure if this is always the case.