Entering edit mode
9.7 years ago
mahnazkiani
▴
60
I went through the R script that was online from the
http://www.pb.ethz.ch/downloads/
###############################################################################################################
# t_GCN.r script for computing targeted gene co-expression networks #
# 1. "guide-query GCN" --- computes correlations between guide and query genes #
# We are grateful to Marc W. Schmid, UZH, schmid.m@access.uzh.ch for improving the speed of this step #
# #
# 2. "guide-query groups GCN" --- computes correlations between guide genes and groups of query genes #
###############################################################################################################
# Required packages and libraries
source("http://bioconductor.org/biocLite.R")
library(Biobase)
require(multtest)
require(xtable)
################################################################################
# 1. "guide-query GCN" --- computes correlations between guide and query genes #
################################################################################
# set the threshold for P-values
alpha <- 0.05
# read in the file containing the expression data for the guide genes
guide_expression <-read.csv(file="T:/Your_WorkingDirectory/guide_expression.csv",header=TRUE, row.names=1)
guide_expression_names <- colnames(guide_expression)
# read in the file containing the expression data for the query genes
query_expression <- read.csv(file="T:/Your_WorkingDirectory/query_expression.csv",header=TRUE, row.names=1)
m <- ncol(query_expression)
n <- nrow(query_expression)
cornames <- colnames(query_expression)
data <- cbind(guide_expression, query_expression)
# calculate the Pearson correlation coefficients between guide genes and each group of query genes
# to use other similarity measures change for example "pearson" to "spearman"
corData <- cor(data, method ="pearson")[1:ncol(guide_expression),(ncol(guide_expression)+1):(m+ncol(guide_expression))]
# asses the statistical significance of positive Pearson correlation coefficients
all.pValue <- apply(corData, 1, function(x) 1-pnorm(sqrt(n-3)*0.5*(log(1+x)-log(1-x))))
# to assess the statistical significance of negative Pearson correlation coefficients run the entire script with the
# following modificantion: all.pValue <-apply(corData, 1, function(x) pnorm(sqrt(n-3)*0.5*(log(1+x)-log(1-x))))
all.pValue <- as.vector(all.pValue)
# Apply multiple testing correction (Bonferroni, Holm, FDR)
bonf <- mt.rawp2adjp(all.pValue, proc="Bonferroni")
pValue.bonf <- bonf$adjp[,2][order(bonf$index)]
pValue.bonf <- matrix(pValue.bonf,nrow=m)
pValue.bonf <-rbind(pValue.bonf,colSums((pValue.bonf<=alpha)))
holm <- mt.rawp2adjp(all.pValue, proc="Holm")
pValue.holm <- holm$adjp[,2][order(holm$index)]
pValue.holm <- matrix(pValue.holm,nrow=m)
pValue.holm <-rbind(pValue.holm,colSums((pValue.holm<=alpha)))
fdr <- mt.rawp2adjp(all.pValue, proc="BH")
pValue.fdr <- fdr$adjp[,2][order(fdr$index)]
pValue.fdr <- matrix(pValue.fdr,nrow=m)
pValue.fdr <-rbind(pValue.fdr,colSums((pValue.fdr<=alpha)))
colnames(pValue.bonf) <- colnames(pValue.holm) <- colnames(pValue.fdr) <- guide_expression_names
rownames(pValue.bonf) <- rownames(pValue.holm) <- rownames(pValue.fdr) <- c(cornames,"nr. signif.")
# save the results as HTML tables in your working directory)
pValue.bonf <- xtable(pValue.bonf,digits=4)
print(pValue.bonf, type="html", file=paste('guide_query_GCN',"bonf",".html",sep=""))
pValue.holm <- xtable(pValue.holm,digits=4)
print(pValue.holm, type="html", file=paste('guide_query_GCN',"holm",".html",sep=""))
pValue.fdr <- xtable(pValue.fdr,digits=4)
print(pValue.fdr, type="html", file=paste('guide_query_GCN',"fdr",".html",sep=""))
Now I have a .html file with correlation, how I can use this file to create a network. I tried to import it to Cytoscape but It didn't work. appreciate any help.
Thanks,
Mahnaz