scitkit-learn query data dimension must match training data dimension
1
0
Entering edit mode
9.6 years ago
hrbrt.sch ▴ 10

I'm trying to use this code from the scikit learn site.

I'm using my own data.

My problem is, I have a lot more than two features. If I want to "expand" the features from 2 to 3 or 4.

I'm getting:

query data dimension must match training data dimension
def machine():
with open("test.txt",'r') as csvr:

    reader= csv.reader(csvr,delimiter='\t')

    for i,row in enumerate(reader):

        if i==0:
            pass
        elif '' in row[2:]:
            pass
        else:
            liste.append(map(float,row[2:]))

a = np.array(liste)
h = .02
names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree",
         "Random Forest", "AdaBoost", "Naive Bayes", "LDA", "QDA"]
classifiers = [
    KNeighborsClassifier(1),
    SVC(kernel="linear", C=0.025),
    SVC(gamma=2, C=1),
    DecisionTreeClassifier(max_depth=5),
    RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
    AdaBoostClassifier(),
    GaussianNB(),
    LDA(),
    QDA()]


X = a[:,:3]
y = np.ravel(a[:,13])

linearly_separable = (X, y)
datasets =[linearly_separable]
figure = plt.figure(figsize=(27, 9))
I = 1

for ds in datasets:
    X, y = ds

    X = StandardScaler().fit_transform(X)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)

    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))

    cm = plt.cm.RdBu
    cm_bright = ListedColormap(['#FF0000', '#0000FF'])
    ax = plt.subplot(len(datasets), len(classifiers) + 1, i)

    ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)

    ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
    ax.set_xlim(xx.min(), xx.max())
    ax.set_ylim(yy.min(), yy.max())
    ax.set_xticks(())
    ax.set_yticks(())
    I += 1

    for name, clf in zip(names, classifiers):
        ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
        print clf.fit(X_train, y_train)
        score = clf.score(X_test, y_test)
        print y.shape, X.shape
        if hasattr(clf, "decision_function"):
            Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
            print Z
        else:
            Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

        Z = Z.reshape(xx.shape)

        ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)
        ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)

        ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,
                   alpha=0.6)

        ax.set_xlim(xx.min(), xx.max())
        ax.set_ylim(yy.min(), yy.max())
        ax.set_xticks(())
        ax.set_yticks(())
        ax.set_title(name)
        ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),
                size=15, horizontalalignment='right')
        I += 1

figure.subplots_adjust(left=.02, right=.98)
plt.show()

In this case I use three features.

What am I doing wrong in the code, Is it something with the X_train and X_test data? With just two features, everything is ok.

My X value:

(array([[ 1.,  1.,  0.],
   [ 1.,  0.,  0.],
   [ 1.,  0.,  0.],
   [ 1.,  0.,  0.],
   [ 1.,  1.,  0.],
   [ 1.,  0.,  0.],
   [ 1.,  0.,  0.],
   [ 3.,  3.,  0.],
   [ 1.,  1.,  0.],
   [ 1.,  1.,  0.],
   [ 0.,  0.,  0.],
   [ 0.,  0.,  0.],
   [ 0.,  0.,  0.],
   [ 0.,  0.,  0.],
   [ 0.,  0.,  0.],
   [ 0.,  0.,  0.],
   [ 4.,  4.,  2.],
   [ 0.,  0.,  0.],
   [ 6.,  3.,  0.],
   [ 5.,  3.,  2.],
   [ 2.,  2.,  0.],
   [ 4.,  4.,  2.],
   [ 2.,  1.,  0.],
   [ 2.,  2.,  0.]]), array([ 1.,  1.,  1.,  1.,  0.,  1.,  1.,  0.,  1.,  1.,  0.,  1.,  1.,
    1.,  1.,  1.,  0.,  1.,  1.,  0.,  1.,  0.,  1.,  1.]))

The first array is the X array and the second array is the y(target) array.

I'm sorry for the bad format = error:

```` Traceback (most recent call last):

File "allM.py", line 144, in <module> mainplot(namePlot,1,2) File "allM.py", line 117, in mainplot

Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

File "/usr/local/lib/python2.7/dist-packages/sklearn/neighbors/classification.py", line 191, in predict_proba neigh_dist, neigh_ind = self.kneighbors(X)

File "/usr/local/lib/python2.7/dist-packages/sklearn/neighbors/base.py", line 332, in kneighbors return_distance=return_distance)

File "binary_tree.pxi", line 1298, in sklearn.neighbors.kd_tree.BinaryTree.query (sklearn/neighbors/kd_tree.c:10433)

ValueError: query data dimension must match training data dimension ```

and this is the X array without putting him into the Dataset "ds".

[[ 1.  1.  0.][ 1.  0.  0.][ 1.  0.  0.][ 1.  0.  0.][ 1.  1.  0.][ 1.  0.  0.][ 1.  0.  0.][ 3.  3.  0.][ 1.  1.  0.][ 1.  1.  0.][ 0.  0.  0.][ 0.  0.  0.][ 0.  0.  0.][ 0.  0.  0.][ 0.  0.  0.][ 0.  0.  0.][ 4.  4.  2.][ 0.  0.  0.][ 6.  3.  0.][ 5.  3.  2.][ 2.  2.  0.][ 4.  4.  2.][ 2.  1.  0.][ 2.  2.  0.]]
python scikit-learn machine-learning • 9.2k views
ADD COMMENT
0
Entering edit mode
9.6 years ago

I really don't think this is the right forum to pose this question as this is Bioinformatics question-answer site, where's your question is general programming related. Try StackOverflow.

As the traceback says, the error occurs in:

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])

So I take it is related to xx and yy variables rather than anything else. I would look how they change from 2 to 3 features and go from there.

Cannot tell you more because I do not have a way to run your code! I.e. I have no idea what the test.txt file is and what its contents are. I would suggest posting a self-contained snippet (i.e. hard code the X and Y variables) that one could just copy and paste into their computer to reproduce the error and we can have a look again.

ADD COMMENT

Login before adding your answer.

Traffic: 2719 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6