WGCNA defining parameters for soft threshold in R?
1
0
Entering edit mode
9.5 years ago
madkitty ▴ 690

I'm trying to compare 3 "control" datasets to 2 different samples in WGCNA. I have no clue about standards to run WGCNA nor do I understand why people use that stuff.. anyhow my boss wants to me to use it. When following the steps posted here: http://pklab.med.harvard.edu/scw2014/WGCNA.html

Apparently, we need to define a soft threshold, and I don't understand how can I determine necessary parameters. Is there any rule to help me pick up the parameters cex1, abline h and the soft power threshold?

powers = c(c(1:10), seq(from = 12, to=20, by=2)); sft=pickSoftThreshold(datExpr,dataIsExpr = TRUE,powerVector = powers,corFnc = cor,corOptions = list(use = 'p'),networkType = "unsigned")
​## Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1 1 0.719 -1.700 0.874 40.60 37.900 102.0
## 2 2 0.521 -0.707 0.679 15.00 12.500 40.0
## 3 3 0.814 -0.476 0.764 9.92 7.970 25.9
## 4 4 0.900 -0.671 0.887 7.73 5.790 23.6
## 5 5 0.803 -0.809 0.748 6.47 4.140 22.2
## 6 6 0.749 -0.901 0.677 5.63 3.610 21.1
## 7 7 0.880 -0.913 0.846 5.02 3.100 20.2
## 8 8 0.885 -0.928 0.853 4.55 2.610 19.4
## 9 9 0.849 -0.940 0.806 4.17 2.170 18.6
## 10 10 0.918 -0.940 0.896 3.86 1.890 18.0
## 11 12 0.897 -0.942 0.867 3.36 1.610 16.8
## 12 14 0.882 -0.949 0.849 2.99 1.360 15.8
## 13 16 0.819 -0.996 0.770 2.69 1.180 15.0
## 14 18 0.890 -0.974 0.858 2.44 0.997 14.3
​## 15 20 0.885 -0.987 0.852 2.24 0.802 13.7
# Plot the results
sizeGrWindow(9, 5)
par(mfrow = c(1,2));
cex1 = 0.9; 

# Scale-free topology fit index as a function of the soft-thresholding power
plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],xlab="Soft Threshold (power)",ylab="Scale Free Topology Model Fit, signed R^2",type="n", main = paste("Scale independence"));
text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],labels=powers,cex=cex1,col="red");

# Red line corresponds to using an R^2 cut-off
abline(h=0.80,col="red") 

# Mean connectivity as a function of the soft-thresholding power
plot(sft$fitIndices[,1], sft$fitIndices[,5],xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",main = paste("Mean connectivity"))
text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, cex=cex1,col="red")
WGCNA R • 4.2k views
ADD COMMENT
0
Entering edit mode
7.4 years ago
hygine • 0
abline(h=0.90,col="red")

you can chose power=4.

ADD COMMENT

Login before adding your answer.

Traffic: 1611 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6