Hello everyone! I've got a question about a sense of conducting a differential expression analysis without having technical replicates. What I have now, is RNA-seq data from four developmental stages of a parasite (1 biological replicate per sample, no technical replicates). The genome size is ~40 Mb and for each sample there is between 100 to 170 million paired-end reads, so sequencing depth is really big. I have used both DESeq and Cufflinks to estimate expression on a gene level. In the case of having no replicates, should I just focus on fold change between the samples? I'm not sure if the calculated p-values in both DESeq and Cufflinks are meaningful in case of no replicates.. Thanks for any suggestions!
Sorry, what I have is all together 4 RNA-seq datasets - 1 dataset per developmental stage of the parasite. Additionally, couple of genes were tested with RT-PCR by my colleague, so I can always use it as sort of benchmark to see if the observed fold changes from RNA-seq are being reflected in RT-PCR. Also, there is another very closely related species, for which gene expression was estimated in two (out of four) developmental stages, but with several biological and technical replicates this time. I'm just assuming that these results could also serve for checking if the observed expression patterns from my analyses are correct.
That seems reasonable.