Hi,
I've run into your question while looking for something else. This gave me great idea to show my own analysis. I've prepared this fig-5A-like plot and I thought to share it. Here is the result picture:
http://imgur.com/XC9dWXJ
And here is the code (in R):
# Preparing data
data <- data.frame(Gene_set=c("Gene_set1", "Gene_set2", "Gene_set3", "Gene_set4", "Gene_set5"),
NES=runif(5, -3, 3),
FDR_q.val=runif(5,0,1),
No_of_significant_genes=runif(5, 1, 100))
# Plotting
library(ggplot2)
p <- ggplot(data, aes(NES, Gene_set))
p + geom_point(aes(colour=FDR_q.val, size=No_of_significant_genes)) +
scale_color_gradientn(colours=rainbow(4), limits=c(0, 1)) +
geom_vline(xintercept=0, size=0.5, colour="gray50") +
theme(panel.background=element_rect(fill="gray95", colour="gray95"),
panel.grid.major=element_line(size=0.25,linetype='solid', colour="gray90"),
panel.grid.minor=element_line(size=0.25,linetype='solid', colour="gray90"),
axis.title.y=element_blank()) +
expand_limits(x=c(-3,3)) +
scale_x_continuous(breaks=c(-3,-2,-1,0,1,2,3)) +
scale_y_discrete(limits=rev(data$Gene_set))
This post was cited in: