Hello all,
I am new to RNA-seq, and would like your input to see if my results are real or not. I am trying to see if there are any differentially expressed genes between knockout and wild-type strain with 3 animals for each genotype. In my gene_exp.diff output from cuffdiff the most significant p-value is 5.00E-05 and I have 58 genes with this value, and all of them have the exact same q-value of 0.0150853. I am a bit skeptical that all of these genes can have the exact same p and q values....
Could it be that they actually have a lower significant value, but cuffdiff cuts them all off at a p-value of 5.00E-05 and q-value of 0.0150853?
I have included a sample of my results below & I am using cufflinks 2.2.1
I would appreciate any insight into this phenomenon.
Cheers,
Yuka
value_1 value_2 log2(fold_change) test_stat p_value q_value significant
89.2154 58.9422 -0.597993 -2.83732 5.00E-05 0.0150853 yes
1.11605 0.637795 -0.807238 -2.87108 5.00E-05 0.0150853 yes
3.28464 2.19358 -0.582446 -2.43504 5.00E-05 0.0150853 yes
133.831 3.77205 -5.14892 -10.0845 5.00E-05 0.0150853 yes
439.124 707.344 0.687783 3.06388 5.00E-05 0.0150853 yes
46.5894 20.684 -1.17148 -4.54961 5.00E-05 0.0150853 yes
4.29346 0.487185 -3.1396 -5.51822 5.00E-05 0.0150853 yes
3.98649 2.53882 -0.650961 -2.34521 5.00E-05 0.0150853 yes
2.43337 7.40836 1.6062 3.70451 5.00E-05 0.0150853 yes
3.09364 1.61501 -0.937765 -2.6357 5.00E-05 0.0150853 yes
22.7107 34.5983 0.607328 2.75673 5.00E-05 0.0150853 yes
1.62867 0.384298 -2.0834 -3.16599 5.00E-05 0.0150853 yes
85.5877 40.7053 -1.07218 -3.79772 5.00E-05 0.0150853 yes
7.59285 4.52762 -0.74589 -3.00281 5.00E-05 0.0150853 yes
0.655639 1.15038 0.811131 3.2065 5.00E-05 0.0150853 yes
16.8931 9.04287 -0.901585 -3.10804 5.00E-05 0.0150853 yes
2.13982 1.15785 -0.886043 -2.26105 5.00E-05 0.0150853 yes
51.0117 70.4272 0.465303 2.23548 5.00E-05 0.0150853 yes
16.4426 4.60742 -1.8354 -6.30806 5.00E-05 0.0150853 yes
1.70664 3.06055 0.842634 2.63646 5.00E-05 0.0150853 yes
25898.9 11368.1 -1.1879 -2.67136 5.00E-05 0.0150853 yes
31.0799 43.4487 0.483332 2.38779 5.00E-05 0.0150853 yes
1.34841 0.854922 -0.657398 -2.31314 5.00E-05 0.0150853 yes
8.65166 2.89657 -1.57863 -6.03995 5.00E-05 0.0150853 yes
84.8254 128.85 0.603121 3.00014 5.00E-05 0.0150853 yes
7.3413 4.40212 -0.737838 -3.1716 5.00E-05 0.0150853 yes
35.9883 52.4989 0.544761 2.75034 5.00E-05 0.0150853 yes
5.09062 3.22742 -0.657457 -2.46845 5.00E-05 0.0150853 yes
3.54614 2.26065 -0.649511 -2.44616 5.00E-05 0.0150853 yes
5.88631 2.35884 -1.31929 -2.90402 5.00E-05 0.0150853 yes
1.63451 0.707828 -1.20739 -3.0934 5.00E-05 0.0150853 yes
7.81814 12.558 0.68371 2.81042 5.00E-05 0.0150853 yes
73.4685 110.3 0.586236 2.84624 5.00E-05 0.0150853 yes
3.8276 2.46574 -0.634417 -2.42448 5.00E-05 0.0150853 yes
22.13 14.2849 -0.631518 -2.55388 5.00E-05 0.0150853 yes
10.0575 5.06492 -0.989659 -3.61907 5.00E-05 0.0150853 yes
4.56879 2.70737 -0.754918 -2.5256 5.00E-05 0.0150853 yes
5.17134 3.10769 -0.734697 -2.88216 5.00E-05 0.0150853 yes
10.8373 6.79769 -0.672893 -2.30828 5.00E-05 0.0150853 yes
1.13635 0.563153 -1.0128 -2.01683 5.00E-05 0.0150853 yes
45.5072 76.8825 0.756562 3.63131 5.00E-05 0.0150853 yes
1.01017 0.112521 -3.16633 -4.40682 5.00E-05 0.0150853 yes
1.3256 0 #NAME? #NAME? 5.00E-05 0.0150853 yes
3.47888 0 #NAME? #NAME? 5.00E-05 0.0150853 yes
76.2555 33.5566 -1.18424 -4.46786 5.00E-05 0.0150853 yes
11.6164 19.7901 0.768611 3.5777 5.00E-05 0.0150853 yes
4.70657 3.21184 -0.551276 -2.49339 5.00E-05 0.0150853 yes
4.45358 1.18755 -1.90698 -5.88499 5.00E-05 0.0150853 yes
179.376 122.177 -0.554005 -2.59482 5.00E-05 0.0150853 yes
1.88054 1.23137 -0.610883 -2.60224 5.00E-05 0.0150853 yes
51.2297 34.7039 -0.561882 -2.35145 5.00E-05 0.0150853 yes
1.55802 5.58375 1.84152 4.20437 5.00E-05 0.0150853 yes
1.15313 0 #NAME? #NAME? 5.00E-05 0.0150853 yes
6.63245 12.3112 0.89236 3.63541 5.00E-05 0.0150853 yes
4.33681 7.43317 0.777344 2.41337 5.00E-05 0.0150853 yes
57.6986 11.8767 -2.2804 -4.98563 5.00E-05 0.0150853 yes
6.55491 2.75186 -1.25217 -2.86793 5.00E-05 0.0150853 yes
25.3647 16.1568 -0.650683 -2.48292 5.00E-05 0.0150853 yes
Which version is this? I know there was an issue with this until one of the most recent versions.
Oops I should have included that above: I am using cufflinks/2.2.1
With cufflinks 2.2.0 I have the same problem. I didn't have it with older versions (I can't find the versions right now, sorry!). I wonder if the problem emerged when they started using the method of Simon and Anders for estimating dispersion across replicates.
I am using 2.2.1