I aligned the RNAseq reads to the diploid (hybrid genome) and calculated the TPM (transcripts per million) values for my samples using EMASE. So, the TPM values are reported for each gene_id and haplotype. I want to do ASE variation analyses within the samples. My thought is that applying DE approaches to it would be fine, but the analyses should focus for the difference with in the samples and also check if the ASE differences for any given gene is/are consistent across samples.
I have came across edgeR, DeSeq, DeSeq2, kalliso sleuth. But, I am wondering if someone could suggest which of these tools would be best to work with my data.
Note: I posted the same question on google groups just to expedite the analyses. If this violates the policy of question posting please let me know.
Thanks, - Bishwa K.
I already have TPM valuses calculated using EMASE. Previously I wanted to use ASE-TIGAR for ASE analyses but had to changes since it wasn't accepting my scaffolds. Now, I have TPM values, so I want to get some opinion on doing statistical analyses. I have explored edgeR, Deseq2, these tools are for Differential Expression. But I want something simple to start with and specific to the TPM values calculated for two haplotypes within a sample. I know these data are mainly approached by using poisson model with overdispersion, or by using negative bionomial regression. I am looking for some worked out examples on ASE to stay on right track, until now I have found none.
Here is the structure of my data: