What is the difference between calculating fold-changes from normalized counts v. fitting to a model?
1
0
Entering edit mode
8.3 years ago
snamjoshi87 ▴ 40

I am new to RNAseq and I am trying to understand some of the theory behind the various analysis methods.

Once you have raw read counts, you can pass these values to a package like DESeq or EdgeR for differential expression analysis. These packages will filter low counts, normalize, perform modeling based on a distribution, and report a fold-change along with some kind of value like an FDR cut-off.

However, you could also normalize the raw counts, filter very low counts/0 counts, average across replicates, perform additional filtering for replicates that vary greatly in counts, and then divide your filtered counts for the experimental sample over a control sample. This would give you a "fold-change over baseline". This very simple approach does not use a model or have any kind of associated FDR.

My question(s): What is the difference between these two different approaches and what do they tell you (or what is the limit of what they can tell you)? Is one "more valid" than the other?

RNA-Seq differential-gene-expression • 4.7k views
ADD COMMENT
2
Entering edit mode
8.3 years ago

Fold-change alone isn't a reliable indicator of significance, which is why a statistical model is used. This is the same reason you do a T-test (or similar) instead of just reporting the ratio of two groups of measurements. BTW, it's exactly the FDR (well, adjusted p-value) that everyone wants.

ADD COMMENT
1
Entering edit mode

I believe it's implied in your response, but it's also worth explicitly pointing out significant p-values do not necessarily imply biologically significant or interesting differences.

ADD REPLY
1
Entering edit mode

Definitely, statistical significance isn't biological relevance. The strategy is to filter by both adjusted p-value and fold-change (i.e., the fit coefficient from the model). I should note that fitting a model has the benefit that you can do various types of shrinkage (aka, regress with a prior distribution) and profile out things like dispersion.

ADD REPLY

Login before adding your answer.

Traffic: 2069 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6