About TCGAbiolinks and Rstudio
0
0
Entering edit mode
8.3 years ago
pxf109 ▴ 20

I try to use TCGAbiolinks in Rstudio(GDCquery function), but it always has a error : cannot open file '~/R/x86_64-pc-linux-gnu-library/3.3/readr/R/sysdata.rdb': No such file or directory. I have try these on Windows and Ubnutu, but the result is the same. I am sure this package exist in right posistion. I am not sure whether this problem is caused by the permission. I tried to reinstall readr, but I still has this problem. However, i try to use TCGAbiolinks through command line, it seems work. Does TCGAbiolinks support Rstudo or it need some special set?

  library("TCGAbiolinks", lib.loc="~/R/x86_64-pc-linux-gnu-library/3.3")
     query <- GDCquery(project = "TARGET-AML",
                       data.category = "Transcriptome Profiling",
                       data.type = "Gene Expression Quantification", 
                       workflow.type = "HTSeq - Counts")

    error message: cannot open file '~/R/x86_64-pc-linux-gnu-library/3.3/readr/R/sysdata.rdb': No such file or directory.

Here is my sessioninfo:

R version 3.3.1 (2016-06-21)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.1 LTS

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8    LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] TCGAbiolinks_2.0.6

loaded via a namespace (and not attached):
  [1] circlize_0.3.8                          aroma.light_3.2.0                       plyr_1.8.4                             
  [4] igraph_1.0.1                            lazyeval_0.2.0                          ConsensusClusterPlus_1.36.0            
  [7] splines_3.3.1                           BiocParallel_1.6.6                      GenomeInfoDb_1.8.3                     
 [10] ggplot2_2.1.0                           TH.data_1.0-7                           digest_0.6.10                          
 [13] foreach_1.4.3                           BiocInstaller_1.22.3                    gdata_2.17.0                           
 [16] magrittr_1.5                            cluster_2.0.4                           doParallel_1.0.10                      
 [19] limma_3.28.20                           ComplexHeatmap_1.10.2                   Biostrings_2.40.2                      
 [22] readr_1.0.0                             annotate_1.50.0                         matrixStats_0.50.2                     
 [25] R.utils_2.3.0                           sandwich_2.3-4                          colorspace_1.2-6                       
 [28] rvest_0.3.2                             ggrepel_0.5                             haven_0.2.1                            
 [31] dplyr_0.5.0                             RCurl_1.95-4.8                          jsonlite_1.0                           
 [34] hexbin_1.27.1                           TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2 graph_1.50.0                           
 [37] genefilter_1.54.2                       lme4_1.1-12                             supraHex_1.10.0                        
 [40] survival_2.39-5                         zoo_1.7-13                              iterators_1.0.8                        
 [43] ape_3.5                                 gtable_0.2.0                            zlibbioc_1.18.0                        
 [46] XVector_0.12.1                          sjstats_0.4.0                           GetoptLong_0.1.4                       
 [49] sjmisc_1.8                              kernlab_0.9-24                          Rgraphviz_2.16.0                       
 [52] shape_1.4.2                             prabclus_2.2-6                          BiocGenerics_0.18.0                    
 [55] DEoptimR_1.0-6                          scales_0.4.0                            DESeq_1.24.0                           
 [58] mvtnorm_1.0-5                           DBI_0.5                                 GGally_1.2.0                           
 [61] edgeR_3.14.0                            ggthemes_3.2.0                          Rcpp_0.12.6                            
 [64] xtable_1.8-2                            matlab_1.0.2                            mclust_5.2                             
 [67] preprocessCore_1.34.0                   stats4_3.3.1                            httr_1.2.1                             
 [70] gplots_3.0.1                            RColorBrewer_1.1-2                      fpc_2.1-10                             
 [73] modeltools_0.2-21                       reshape_0.8.5                           XML_3.98-1.4                           
 [76] R.methodsS3_1.7.1                       flexmix_2.3-13                          nnet_7.3-12                            
 [79] reshape2_1.4.1                          AnnotationDbi_1.34.4                    munsell_0.4.3                          
 [82] tools_3.3.1                             downloader_0.4                          RSQLite_1.0.0                          
 [85] broom_0.4.1                             stringr_1.1.0                           knitr_1.14                             
 [88] robustbase_0.92-6                       caTools_1.17.1                          dendextend_1.3.0                       
 [91] coin_1.1-2                              EDASeq_2.6.2                            nlme_3.1-128                           
 [94] whisker_0.3-2                           R.oo_1.20.0                             xml2_1.0.0                             
 [97] biomaRt_2.28.0                          curl_1.2                                affyio_1.42.0                          
[100] tibble_1.2                              geneplotter_1.50.0                      stringi_1.1.1                          
[103] GenomicFeatures_1.24.5                  lattice_0.20-33                         trimcluster_0.1-2                      
[106] Matrix_1.2-7                            psych_1.6.6                             nloptr_1.0.4                           
[109] effects_3.1-1                           stringdist_0.9.4.1                      GlobalOptions_0.0.10                   
[112] data.table_1.9.6                        cowplot_0.6.2                           bitops_1.0-6                           
[115] dnet_1.0.9                              rtracklayer_1.32.2                      GenomicRanges_1.24.2                   
[118] R6_2.1.3                                latticeExtra_0.6-28                     affy_1.50.0                            
[121] hwriter_1.3.2                           ShortRead_1.30.0                        KernSmooth_2.23-15                     
[124] IRanges_2.6.1                           codetools_0.2-14                        MASS_7.3-45                            
[127] gtools_3.5.0                            assertthat_0.1                          chron_2.3-47                           
[130] SummarizedExperiment_1.2.3              rjson_0.2.15                            mnormt_1.5-4                           
[133] GenomicAlignments_1.8.4                 Rsamtools_1.24.0                        multcomp_1.4-6                         
[136] S4Vectors_0.10.3                        diptest_0.75-7                          parallel_3.3.1                         
[139] sjPlot_2.0.2                            grid_3.3.1                              tidyr_0.6.0                            
[142] class_7.3-14                            minqa_1.2.4

Taceback():

11: date_names_lang(date_names)
10: locale()
9: default_locale()
8: guess_header_(datasource, tokenizer, locale)
7: guess_header(ds_header, tokenizer, locale)
6: col_spec_standardise(data, skip = skip, comment = comment, n = guess_max, 
       col_names = col_names, col_types = col_`enter code here`types, tokenizer = tokenizer, 
       locale = locale)
5: read_delimited(file, tokenizer, col_names = col_names, col_types = col_types, 
       locale = locale, skip = skip, comment = comment, n_max = n_max, 
       guess_max = guess_max, progress = progress)
4: read_tsv("https://gdc-api.nci.nih.gov/projects?size=1000&format=tsv", 
       col_types = "ccccccc")
3: getGDCprojects()
2: checkProjectInput(project)
1: GDCquery(project = "TARGET-AML", data.category = "Transcriptome Profiling", 
       data.type = "Gene Expression Quantification", workflow.type = "HTSeq - Counts")
software error R • 3.2k views
ADD COMMENT

Login before adding your answer.

Traffic: 1710 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6