Rather than using significance (or a given arbitrary threshold for it), you might want to use effect size (after ensuring that you only plot genes which are well in the regime of your detection method). This might be particularly the case if you needed to justify "biological relevance" or find genes for well-doable follow-up experiments.
If C1 and C2 should be biologically different (e.g.: different cell lines,...) a 2D scatter plot might be a better argument than p-values.
If you plot log(T1/C1) on X, and log(T2/C2) on Y, you will immediately see if most genes share a trend TvsC, and whether there would be subsets of genes that would clearly stand out from the rest of the genes, and populate the X or Y axis. If the general trend does not follow the diagonal, you might conclude that 1 and 2 would affect the same genes, but that in 1 or 2 the response is stronger / faster. If you do not see evidence for either, differences in the p-values might result from chance, or slight variation in the experimental settings.
A scatter plot will also tell you if it changes in T1/C1 and T2/C2 affect induced and repressed genes similarly.
(Also note that, if you had arbitrarily precise measurement method, all genes would appear differentially expressed.)
There are some similar posts at the bioconductor mailing list I'd probably do a different analysis though, and set up the following contrasts: A = (T1 - C1) B = (T2 - C2) - (T1 - C1)
Pull out all genes that are significant wrt A into set G_A
For just the genes in G_A, pull out any that are significant wrt B into set G_B.
Then filter the genes in G_B to keep only those whose log-fold-change has opposite parity for contrast A and contrast B: that is, those that are (A-positive, B-negative) or (A-negative, B-positive). Really I'd want to do a one-sided test, that the contrast B is less than 0 whenever A is greater than 0 (and vice versa for A<0, B>0).
Let's imagine that T1 is a drug treatment in one kind of vehicle (solvent), T2 a drug treatment in a different vehicle, and C1 and C2 the use of each vehicle only (no drug dissolved).
To rephrase your question are you saying that you have a design matrix like the following (triplicates not indicated) and you are looking for an effect that is seen specifically in treatment 1, after correcting for differences induced by the vehicle ?
(In that case, I do not have the solution, but I would be interested to read it from somebody else!)