Hi all,
I want to create Silhouette plots in R. I have the code for that:
library (cluster)
library (vegan)
dis = vegdist(exp_matrix)
res = pam(dis,3) #choice of clustering algorithm
sil = silhouette (res$clustering,dis) # cluster vector
pdf('my_nice_plot.pdf')
plot(sil,col=meta$Colors)
dev.off()
My "meta" table consists of Sample names, the grouping category and their colors.So basically I want to color them by their known grouping category. I am specifying 3 clusters,because of 3 grouping categories.But some samples fall into another cluster although they belong to the other grouping category,which is the issue.
I want 3 clusters with 3 colors and if the sample does not fall in the cluster,it should be anti-correlated(represented as bar in opposite direction),rather than falling in another cluster..And hence each 3 clusters will have same color.
Any suggestions ?
Below is my exp_matrix
Sample1 Sample2 Sample3 Sample4 Sample5 Sample6 Sample7 Sample8 Sample9 Sample10
1.335102054 3.077470899 3.138065706 2.554060461 2.533176175 3.787130648 2.017600408 2.406238299 2.571645353 2.786922944
1.856828447 2.903459704 2.032062343 2.089422039 2.181253692 2.168857947 1.340714464 1.334107714 1.252602475 1.599683962
0.997564505 1.003324612 0.937807943 1.033256787 2.01130398 0.997948553 1.459188016 0.948419986 0.933616747 0.938739858
19.91490203 161.3801497 2.974933925 1.15985526 95.63030172 6.869383772 6.224809354 22.43439844 21.77444457 26.02266932
1.235250155 2.752533398 1.852711702 1.294324019 2.202763936 1.221033762 1.094792065 1.070960481 1.1242694 1.089553158
1.01820685 1.177473999 1.000458518 1.028822213 1.321418848 1.089197025 1.079738645 0.997618434 0.997463311 0.993578144
1.107500627 1.074571335 1.110524814 1.192469082 1.047676121 1.127642088 1.01099336 0.993979302 1.092574354 0.987137348
1.036566994 1.008010924 1.04684827 1.055822448 1.087434494 1.01645263 1.054939718 1.059915024 1.04011888 1.043169394
1.771508775 4.541376768 6.247271229 1.698569724 4.300979691 1.922687958 3.996811113 5.225271269 3.427816413 3.586772962
0.997064599 1.054684913 1.02028153 1.01396626 1.031323032 1.020142345 1.050812112 1.021389599 1.04308284 1.048526295
11.97373936 11.09493899 12.56579193 16.26164455 16.95326009 11.59602467 7.035111423 8.062786948 11.9170942 10.97490212
4.563845863 4.417316767 2.868204674 9.889057888 7.385072105 2.580583255 7.461528487 11.89242726 18.39414879 18.86188122
1.000273446 1.000761958 0.998605053 0.995449223 1.040481771 0.999784929 1.033818514 1.026504592 0.984465721 0.98577008
0.981661587 2.521671659 1.006165314 0.97749202 0.999569316 0.979894883 1.304261432 0.983144406 0.980168076 0.97749202
1.004147694 1.013271707 1.006286227 0.997838269 1.01209634 1.004147694 1.036567987 1.001845662 1.001209392 0.997336005
1.005404334 1.005404334 1.005894537 0.998665037 1.015797531 1.009839843 1.023461132 1.019771494 0.998482364 0.998938971
0.998573504 0.998573504 1.019684068 1.014517921 1.018093706 0.998573504 1.033454584 1.008350063 1.004199745 1.007911467
4.435206425 2.571609049 2.202237633 18.22954904 10.39052668 1.281203044 2.51255292 2.786338681 2.947128775 3.972638039
1.25034501 3.454024869 2.532858896 3.067917607 1.858659586 1.57838548 1.959222293 3.429776931 2.838722643 3.075910635
3.684780859 6.868469943 6.94562784 8.108387027 8.395853627 6.062065966 3.533193809 5.382000926 9.113293535 8.081187443
Here is the metadata:
Analysis_id Classification Colors
Sample1 Clus1 red
Sample2 Clus1 red
Sample3 Clus1 red
Sample4 Clus1 red
Sample5 Clus2 green
Sample6 Clus2 green
Sample7 Clus2 green
Sample8 Clus2 green
Sample9 Clus3 orange
Sample10 Clus3 orange
Thanks, Ron
We can't reproduce your code without data (exp_matrix)