WGCNA consensus network issue creating module-trait relationship
1
0
Entering edit mode
6.5 years ago

I am attempting to create a module-trait correlation heatmap from a WGCNA consensus network as described in this vignette: https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/Consensus-RelateModsToTraits.pdf

However when I calculate the correlation between the module eigengenes and my trait information, each value in the resulting correlation matrix comes back NA. I have two sets with four samples each (this is a test run before adding in all samples). My trait data is:

> Traits
[[1]]
[[1]]$data
                          CCF_200mM IMR_200mM
CCF_200_1_S35_L006_R1_001         1         0
CCF_200_2_S36_L006_R1_001         1         0
CCF_200_3_S37_L006_R1_001         1         0
CCF_200_4_S38_L006_R1_001         1         0


[[2]]
[[2]]$data
                          CCF_200mM IMR_200mM
IMR_200_1_S51_L006_R1_001         0         1
IMR_200_2_S52_L006_R1_001         0         1
IMR_200_3_S53_L006_R1_001         0         1
IMR_200_4_S54_L006_R1_001         0         1

Where 0 denotes NO and 1 denotes YES.

Additionally, all values within both consMEs (my module eigengene data variable) and my trait information are numeric:

> str(Traits)
List of 2
 $ :List of 1
  ..$ data:'data.frame':    4 obs. of  2 variables:
  .. ..$ CCF_200mM: num [1:4] 1 1 1 1
  .. ..$ IMR_200mM: num [1:4] 0 0 0 0
 $ :List of 1
  ..$ data:'data.frame':    4 obs. of  2 variables:
  .. ..$ CCF_200mM: num [1:4] 0 0 0 0
  .. ..$ IMR_200mM: num [1:4] 1 1 1 1

> str(consMEs)
List of 2
 $ :List of 1
  ..$ data:'data.frame':    4 obs. of  76 variables:
  .. ..$ ME10: num [1:4] -0.3744 0.8431 -0.0945 -0.3742
  .. ..$ ME48: num [1:4] 0.448 0.542 -0.403 -0.586
  .. ..$ ME68: num [1:4] 0.315 0.637 -0.332 -0.62
  .. ..$ ME3 : num [1:4] -0.262 -0.5514 0.7918 0.0216
  .. ..$ ME44: num [1:4] -0.509 -0.0171 0.8118 -0.2856
  .. ..$ ME19: num [1:4] -0.662 0.108 0.723 -0.169
  .. ..$ ME8 : num [1:4] -0.247 0.628 0.295 -0.677
  .. ..$ ME64: num [1:4] -0.401 0.443 0.545 -0.587
  .. ..$ ME7 : num [1:4] -0.536 -0.379 0.732 0.183
  .. ..$ ME33: num [1:4] -0.74 0.31 0.578 -0.149
  .. ..$ ME61: num [1:4] -0.331 0.704 0.216 -0.589
...
 $ :List of 1
  ..$ data:'data.frame':    4 obs. of  76 variables:
  .. ..$ ME10: num [1:4] 0.42 -0.487 -0.507 0.574
  .. ..$ ME48: num [1:4] 0.576 -0.432 -0.557 0.413
  .. ..$ ME68: num [1:4] 0.46 0.232 -0.844 0.152
  .. ..$ ME3 : num [1:4] 0.818 -0.538 -0.105 -0.175
  .. ..$ ME44: num [1:4] 0.551 -0.361 -0.618 0.429
  .. ..$ ME19: num [1:4] 0.595 0.395 -0.494 -0.496
  .. ..$ ME8 : num [1:4] 0.764 0.127 -0.41 -0.481
  .. ..$ ME64: num [1:4] 0.707 -0.536 0.229 -0.401
  .. ..$ ME7 : num [1:4] -0.247 -0.455 -0.142 0.844
  .. ..$ ME33: num [1:4] -0.812 0.113 0.144 0.554
  .. ..$ ME61: num [1:4] -0.766 0.427 0.465 -0.126
...

The code I am attempting is:

moduleTraitCor = list()
moduleTraitPvalue = list()

for (set in 1:nSets)
{
    moduleTraitCor[[set]] = cor(consMEs[[set]]$data, Traits[[set]]$data, use = "p");    
    moduleTraitPvalue[[set]] = corPvalueFisher(moduleTraitCor[[set]], exprSize$nSamples[set]);
}

Which returns:

> moduleTraitCor
[[1]]
     CCF_200mM IMR_200mM
ME10        NA        NA
ME48        NA        NA
ME68        NA        NA
ME3         NA        NA
ME44        NA        NA
ME19        NA        NA
ME8         NA        NA
ME64        NA        NA
ME7         NA        NA
ME33        NA        NA
ME61        NA        NA
...
[[2]]
     CCF_200mM IMR_200mM
ME10        NA        NA
ME48        NA        NA
ME68        NA        NA
ME3         NA        NA
ME44        NA        NA
ME19        NA        NA
ME8         NA        NA
ME64        NA        NA
ME7         NA        NA
ME33        NA        NA
ME61        NA        NA
...

How can I get cor() to compute the correlation between Traits and my consensus module eigengenes?

> sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.5 LTS

Matrix products: default
BLAS: /usr/lib/libblas/libblas.so.3.0
LAPACK: /usr/lib/lapack/liblapack.so.3.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ggplot2_2.2.1         flashClust_1.01-2     WGCNA_1.62           
[4] fastcluster_1.1.24    dynamicTreeCut_1.63-1

Thanks for your help.

RNA-Seq R WGCNA correlation • 2.0k views
ADD COMMENT
0
Entering edit mode

You should make sure that you are using numbers in your argument. If one of the variables used in the equation is a character vector, the results would be NAs.

ADD REPLY
0
Entering edit mode
5.4 years ago
rmash ▴ 20

Did you ever solve this. I am having the same issue. I think it has somehting to do with how my mulitExpr dataset is structured.

ADD COMMENT

Login before adding your answer.

Traffic: 2318 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6