Entering edit mode
6.2 years ago
Paul
▴
80
I am using a dataset GSE1297, which contains gene expression for multiple groups ( Control
, Incipient
, Moderate
,Severe
).
My contrast matrix for analyzing the dataset looks like the following
contrast.matrix <- makeContrasts(
CI = Control - Incipient,
CM = Control - Moderate,
HM = Control - Severe,
levels = design
)
And with the following written code for the dataset GSE1297, I don't get any significant genes with fold change value >=2.
setwd("C:\\GSE1297\\GSE1297\\")
library(limma)
library(affy)
library(affyio)
library(gcrma)
library(oligo)
library(pd.hg.u133.plus.2)
library(hgu133plus2.db)
library(annotate)
celFiles <- list.celfiles('C:\\GSE1297\\GSE1297\\', full.names=TRUE)
rawData <- read.celfiles(celFiles)
rmaRes <- rma(rawData) # normalization using RMA
eset <- exprs(rmaRes)
labels <- factor(
c(rep('Control', 9), rep('Incipient', 7), rep('Moderate', 8),rep('Severe', 7)),
levels = c('Control', 'Incipient', 'Moderate','Severe')
)
design <- model.matrix(~ 0 + labels)
colnames(design) <- levels(labels)
contrast.matrix <- makeContrasts(
CI = Control - Incipient,
CM = Control - Moderate,
HM = Control - Severe,
levels = design
)
fit <- lmFit(eset, design)
fit.cont <- contrasts.fit(fit, contrast.matrix)
fit.eb <- eBayes(fit.cont)
genes<- topTable(fit.eb, coef=2, n=nrow(eset), adjust="fdr")
write.table(genes,"C:\\GSE1297\\limma_rma.xls",sep="\t",col.names = NA)
Please let me know where am I going wrong. I read many tutorials but unable to find out what is wrong with the code.
I had similar kind of problem in my previous post for which I did not find any answer