LS Means Analysis produces NAs
0
2
Entering edit mode
6.0 years ago
wkmustahs21 ▴ 30

I am running an linear model regression analysis script and I am running emmeans (ls means) on my model but I am getting a whole of NA's not sure why... Here is what I have run:

ASM_Data<-read.csv("ASM_FIELD_18_SUMM_wm.csv",header=TRUE, na.strings=c("."))
head(ASM_Data)
str(ASM_Data) 
ASM_Data$REP <- as.factor(ASM_Data$REP)
head(ASM_Data$REP)
ASM_Data$ENTRY_NO <-as.factor(ASM_Data$ENTRY_NO)
head(ASM_Data$ENTRY_NO)
ASM_Data$RANGE<-as.factor(ASM_Data$RANGE)
head(ASM_Data$RANGE)
ASM_Data$PLOT_ID<-as.factor(ASM_Data$PLOT_ID)
head(ASM_Data$PLOT_ID)
ASM_Data$PLOT<-as.factor(ASM_Data$PLOT)
head(ASM_Data$PLOT)
ASM_Data$ROW<-as.factor(ASM_Data$ROW)
head(ASM_Data$ROW)
ASM_Data$REP <- as.numeric(as.character(ASM_Data$REP))
head(ASM_Data$REP)
ASM_Data$CHAFF_COLOR_SCALE <- as.numeric(as.character(ASM_Data$CHAFF_COLOR_SCALE))
head(ASM_Data$CHAFF_COLOR_SCALE)
ASM_Data$SUB.PLOT<- as.factor(ASM_Data$SUB.PLOT)
head(ASM_Data$SUB.PLOT)

I am looking at a linear model dealing with test weight.

This is what I ran:

ASM_Data$TWT_g.li <- as.numeric(as.character((ASM_Data$TWT_g.li)))
head(ASM_Data$TWT_g.li)

ASM_YIELD_1 <- lmTWT_g.li~ENTRY_NO + REP + SUB.BLOCK, data=ASM_Data)
anova(ASM_YIELD_1)
summary(ASM_YIELD_1)
emmeans(ASM_YIELD_1, "ENTRY_NO") ###########ADJ. MEANS

I get an output for anova and summary

anova(ASM_YIELD_1)
Analysis of Variance Table

Response: TWT_g.li
           Df Sum Sq Mean Sq  F value  Pr(>F)    
ENTRY_NO  138 217949    1579   7.0339 < 2e-16 ***
REP         1  66410   66410 295.7683 < 2e-16 ***
SUB.BLOCK   4   1917     479   2.1348 0.08035 .  
Residuals 125  28067     225                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

but for emmeans I get something like this:

ENTRY_NO emmean SE df asymp.LCL asymp.UCL
 840      nonEst NA NA        NA        NA
 850      nonEst NA NA        NA        NA
 851      nonEst NA NA        NA        NA
 852      nonEst NA NA        NA        NA
 853      nonEst NA NA        NA        NA
 854      nonEst NA NA        NA        NA
 855      nonEst NA NA        NA        NA
 857      nonEst NA NA        NA        NA
 858      nonEst NA NA        NA        NA
 859      nonEst NA NA        NA        NA

This can't be right because I do have data for this category :

> head(ASM_Data$TWT_g.li)

[1] 699 618 663 681 650 684

I do have outliers in my data which is indicated by a "." in my data but that's the only thing I can think of which is off. Here is a summary of my data:

 head(ASM_Data)
`TRIAL_ID        PLOT_ID PLOT ROW RANGE REP MP SUB.PLOT ENTRY_NO height flowering CLEAN.WT GRAV.TEST.WEIGHT TWT_g.li`
1 18ASM_OvOv 18ASM_OvOv_002    2   1     2   1  1        A      965     74       133   1071.5           349.37      699
2 18ASM_OvOv 18ASM_OvOv_003    3   1     3   1  1        A      931     70       133    928.8           309.13      618
3 18ASM_OvOv 18ASM_OvOv_004    4   1     4   1  1        A      936     73       134    951.8           331.70      663
4 18ASM_OvOv 18ASM_OvOv_005    5   1     5   1  1        A      983     80       134   1148.6           340.47      681
5 18ASM_OvOv 18ASM_OvOv_006    6   1     6   1  1        B      926     70       133   1014.0           324.95      650
6 18ASM_OvOv 18ASM_OvOv_007    7   1     7   1  1        B      969     73       131   1076.6           342.09      684
  Yield_kg.ha Chaff.Color CHAFF_COLOR_SCALE   PhysMat PhysMat_Julian         PEDIGREE
1        2073      Bronze                 2 6/12/2018            163 OVERLEY/OVERLAND
2        1797       White                 1 6/12/2018            163 OVERLEY/OVERLAND
3        1841       White                 1 6/12/2018            163 OVERLEY/OVERLAND
    4        2222      Bronze                 2 6/12/2018            163 OVERLEY/OVERLAND
    5        1961      Bronze                 2 6/12/2018            163 OVERLEY/OVERLAND

6        2082      Bronze                 2 6/12/2018            163 OVERLEY/OVERLAND

Can someone please give me an idea of what is going wrong??

Thanks !

R lsmeans linear-regression • 1.5k views
ADD COMMENT

Login before adding your answer.

Traffic: 1494 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6