gene counts in Seurat after RunCCA() and AlignSubspace()
3
0
Entering edit mode
6.0 years ago
Bogdan ★ 1.4k

Dear all,

happy and healthy new year !

I would appreciate your help on scRNA-seq analysis , as I am doing a comparison between 2 scRNA-seq datasets, and after I use RunCCA() and AlignSubspace(), as described here :

https://satijalab.org/seurat/immune_alignment.html

please would you let me know how I can access the matrices with the appropriate (processed) gene counts,

in order to make customized boxplots BETWEEN specific GENES that belong to distinct CLUSTERS in CONTROL vs TREATMENT1 (and TREATMENT2) ? thank you very much !

> str(both.combined)
Formal class 'seurat' [package "Seurat"] with 20 slots
  ..@ raw.data    :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
  .. .. ..@ i       : int [1:10354214] 2 22 24 41 43 45 65 67 79 90 ...
  .. .. ..@ p       : int [1:3172] 0 1386 5184 7061 11913 13631 15513 17776 19993 21875 ...
  .. .. ..@ Dim     : int [1:2] 15213 3171
  .. .. ..@ Dimnames:List of 2
  .. .. .. ..$ : chr [1:15213] "Xkr4" "Rp1" "Mrpl15" "Lypla1" ...
  .. .. .. ..$ : chr [1:3171] "ctrl_AAACCTGAGGATTCGG" "ctrl_AAACCTGAGTACTTGC" "ctrl_AAACCTGCAGATAATG" "ctrl_AAACGGGAGACGCACA" ...
  .. .. ..@ x       : num [1:10354214] 3 2 2 15 1 3 1 2 1 1 ...
  .. .. ..@ factors : list()
  ..@ data        :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
  .. .. ..@ i       : int [1:10354214] 2 22 24 41 43 45 65 67 79 90 ...
  .. .. ..@ p       : int [1:3172] 0 1386 5184 7061 11913 13631 15513 17776 19993 21875 ...
  .. .. ..@ Dim     : int [1:2] 15213 3171
  .. .. ..@ Dimnames:List of 2
  .. .. .. ..$ : chr [1:15213] "Xkr4" "Rp1" "Mrpl15" "Lypla1" ...
  .. .. .. ..$ : chr [1:3171] "ctrl_AAACCTGAGGATTCGG" "ctrl_AAACCTGAGTACTTGC" "ctrl_AAACCTGCAGATAATG" "ctrl_AAACGGGAGACGCACA" ...
  .. .. ..@ x       : num [1:10354214] 1.756 1.433 1.433 3.216 0.954 ...
  .. .. ..@ factors : list()
  ..@ scale.data  : num [1:15213, 1:3171] -0.0612 -0.0979 2.8866 -0.6214 -1.0193 ...
  .. ..- attr(*, "dimnames")=List of 2
  .. .. ..$ : chr [1:15213] "Xkr4" "Rp1" "Mrpl15" "Lypla1" ...
  .. .. ..$ : chr [1:3171] "ctrl_AAACCTGAGGATTCGG" "ctrl_AAACCTGAGTACTTGC" "ctrl_AAACCTGCAGATAATG" "ctrl_AAACGGGAGACGCACA" ...
  ..@ var.genes   : chr [1:1157] "Sprr1a" "S100a6" "Spp1" "Cartpt" ...
  ..@ is.expr     : num 0
  ..@ ident       : Factor w/ 18 levels "c1_CTRL","c1_G11",..: 5 9 15 1 5 7 1 1 7 11 ...
  .. ..- attr(*, "names")= chr [1:3171] "ctrl_AAACCTGAGGATTCGG" "ctrl_AAACCTGAGTACTTGC" "ctrl_AAACCTGCAGATAATG" "ctrl_AAACGGGAGACGCACA" ...
  ..@ meta.data   :'data.frame':    3171 obs. of  7 variables:
  .. ..$ nGene        : int [1:3171] 1387 3799 1879 4856 1718 1884 2263 2218 1882 5230 ...
  .. ..$ nUMI         : num [1:3171] 6267 19298 5172 18883 11472 ...
  .. ..$ orig.ident   : Factor w/ 1 level "comparison.ctrl.vs.g11": 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ stim         : chr [1:3171] "CTRL" "CTRL" "CTRL" "CTRL" ...
  .. ..$ res.0.6      : chr [1:3171] "2" "4" "7" "0" ...
  .. ..$ celltype.stim: chr [1:3171] "c3_CTRL" "c5_CTRL" "c8_CTRL" "c1_CTRL" ...
  .. ..$ celltype     : chr [1:3171] "c3" "c5" "c8" "c1" ...
  ..@ project.name: chr "comparison.ctrl.vs.g11"
  ..@ dr          :List of 3
  .. ..$ cca        :Formal class 'dim.reduction' [package "Seurat"] with 7 slots
  .. .. .. ..@ cell.embeddings   : num [1:3171, 1:30] 0.0348 0.0264 0.0147 -0.0331 0.0375 ...
  .. .. .. .. ..- attr(*, "dimnames")=List of 2
  .. .. .. .. .. ..$ : chr [1:3171] "ctrl_AAACCTGAGGATTCGG" "ctrl_AAACCTGAGTACTTGC" "ctrl_AAACCTGCAGATAATG" "ctrl_AAACGGGAGACGCACA" ...
  .. .. .. .. .. ..$ : chr [1:30] "CC1" "CC2" "CC3" "CC4" ...
  .. .. .. ..@ gene.loadings     : num [1:1157, 1:30] 9.3 73.6 44.1 -23.2 -59.9 ...
  .. .. .. .. ..- attr(*, "dimnames")=List of 2
  .. .. .. .. .. ..$ : chr [1:1157] "Sprr1a" "S100a6" "Spp1" "Cartpt" ...
  .. .. .. .. .. ..$ : chr [1:30] "CC1" "CC2" "CC3" "CC4" ...
  .. .. .. ..@ gene.loadings.full: num [1:15213, 1:30] -2.73 -7.44 5.12 -9.41 -2.36 ...
  .. .. .. .. ..- attr(*, "dimnames")=List of 2
  .. .. .. .. .. ..$ : chr [1:15213] "Xkr4" "Rp1" "Mrpl15" "Lypla1" ...
  .. .. .. .. .. ..$ : chr [1:30] "CC1" "CC2" "CC3" "CC4" ...
  .. .. .. ..@ sdev              : num(0) 
  .. .. .. ..@ key               : chr "CC"
  .. .. .. ..@ jackstraw         : NULL
  .. .. .. ..@ misc              : NULL
  .. ..$ cca.aligned:Formal class 'dim.reduction' [package "Seurat"] with 7 slots
  .. .. .. ..@ cell.embeddings   : num [1:3171, 1:20] 1.421 1.058 0.551 -1.527 1.542 ...
  .. .. .. .. ..- attr(*, "dimnames")=List of 2
  .. .. .. .. .. ..$ : chr [1:3171] "ctrl_AAACCTGAGGATTCGG" "ctrl_AAACCTGAGTACTTGC" "ctrl_AAACCTGCAGATAATG" "ctrl_AAACGGGAGACGCACA" ...
  .. .. .. .. .. ..$ : chr [1:20] "ACC1" "ACC2" "ACC3" "ACC4" ...
  .. .. .. ..@ gene.loadings     : num[0 , 0 ] 
  .. .. .. ..@ gene.loadings.full: num[0 , 0 ] 
  .. .. .. ..@ sdev              : num(0) 
  .. .. .. ..@ key               : chr "ACC"
  .. .. .. ..@ jackstraw         : NULL
  .. .. .. ..@ misc              : NULL
  .. ..$ tsne       :Formal class 'dim.reduction' [package "Seurat"] with 7 slots
  .. .. .. ..@ cell.embeddings   : num [1:3171, 1:2] -33.16 -10.77 -5.71 26.2 -33.57 ...
  .. .. .. .. ..- attr(*, "dimnames")=List of 2
  .. .. .. .. .. ..$ : chr [1:3171] "ctrl_AAACCTGAGGATTCGG" "ctrl_AAACCTGAGTACTTGC" "ctrl_AAACCTGCAGATAATG" "ctrl_AAACGGGAGACGCACA" ...
  .. .. .. .. .. ..$ : chr [1:2] "tSNE_1" "tSNE_2"
  .. .. .. ..@ gene.loadings     : num[0 , 0 ] 
  .. .. .. ..@ gene.loadings.full: num[0 , 0 ] 
  .. .. .. ..@ sdev              : num(0) 
  .. .. .. ..@ key               : chr "tSNE_"
  .. .. .. ..@ jackstraw         : NULL
  .. .. .. ..@ misc              : NULL
  ..@ assay       : list()
  ..@ hvg.info    :'data.frame':    0 obs. of  0 variables
Formal class 'data.frame' [package "methods"] with 4 slots
  .. .. ..@ .Data    : list()
  .. .. ..@ names    : chr(0) 
  .. .. ..@ row.names: int(0) 
  .. .. ..@ .S3Class : chr "data.frame"
  ..@ imputed     :'data.frame':    0 obs. of  0 variables
Formal class 'data.frame' [package "methods"] with 4 slots
  .. .. ..@ .Data    : list()
  .. .. ..@ names    : chr(0) 
  .. .. ..@ row.names: int(0) 
  .. .. ..@ .S3Class : chr "data.frame"
  ..@ cell.names  : chr [1:3171] "ctrl_AAACCTGAGGATTCGG" "ctrl_AAACCTGAGTACTTGC" "ctrl_AAACCTGCAGATAATG" "ctrl_AAACGGGAGACGCACA" ...
  ..@ cluster.tree: list()
  ..@ snn         :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
  .. .. ..@ i       : int 0
  .. .. ..@ p       : int [1:2] 0 1
  .. .. ..@ Dim     : int [1:2] 1 1
  .. .. ..@ Dimnames:List of 2
  .. .. .. ..$ : NULL
  .. .. .. ..$ : NULL
  .. .. ..@ x       : num 1
  .. .. ..@ factors : list()
  ..@ calc.params :List of 7
  .. ..$ CreateSeuratObject  :List of 13
  .. .. ..$ project             : chr "comparison.ctrl.vs.g11"
  .. .. ..$ min.cells           : num 0
  .. .. ..$ min.genes           : num 0
  .. .. ..$ is.expr             : num 0
  .. .. ..$ normalization.method: NULL
  .. .. ..$ scale.factor        : num 10000
  .. .. ..$ do.scale            : logi FALSE
  .. .. ..$ do.center           : logi FALSE
  .. .. ..$ names.field         : num 1
  .. .. ..$ names.delim         : chr "_"
  .. .. ..$ display.progress    : logi TRUE
  .. .. ..$ ...                 : symbol 
  .. .. ..$ time                : POSIXct[1:1], format: "2019-01-05 18:33:46"
  .. ..$ NormalizeData       :List of 5
  .. .. ..$ assay.type          : chr "RNA"
  .. .. ..$ normalization.method: chr "LogNormalize"
  .. .. ..$ scale.factor        : num 10000
  .. .. ..$ display.progress    : logi TRUE
  .. .. ..$ time                : POSIXct[1:1], format: "2019-01-05 18:33:46"
  .. ..$ ScaleData           :List of 16
  .. .. ..$ genes.use         : chr [1:15213] "Xkr4" "Rp1" "Mrpl15" "Lypla1" ...
  .. .. ..$ vars.to.regress   : symbol 
  .. .. ..$ model.use         : chr "linear"
  .. .. ..$ use.umi           : logi FALSE
  .. .. ..$ do.scale          : logi TRUE
  .. .. ..$ do.center         : logi TRUE
  .. .. ..$ scale.max         : num 10
  .. .. ..$ block.size        : num 1000
  .. .. ..$ min.cells.to.block: num 3000
  .. .. ..$ display.progress  : logi TRUE
  .. .. ..$ assay.type        : chr "RNA"
  .. .. ..$ do.cpp            : logi TRUE
  .. .. ..$ check.for.norm    : logi TRUE
  .. .. ..$ do.par            : logi FALSE
  .. .. ..$ num.cores         : num 1
  .. .. ..$ time              : POSIXct[1:1], format: "2019-01-05 18:33:47"
  .. ..$ RunCCA              :List of 11
  .. .. ..$ group1         : symbol 
  .. .. ..$ group2         : symbol 
  .. .. ..$ group.by       : symbol 
  .. .. ..$ num.cc         : num 30
  .. .. ..$ genes.use      : chr [1:1157] "Sprr1a" "S100a6" "Spp1" "Cartpt" ...
  .. .. ..$ scale.data     : logi TRUE
  .. .. ..$ rescale.groups : logi FALSE
  .. .. ..$ ...            :length 2, mode "...": "ctrl" "stim"
  .. .. ..$ time           : POSIXct[1:1], format: "2019-01-05 18:33:53"
  .. .. ..$ object.project : chr "comparison.ctrl.vs.g11"
  .. .. ..$ object2.project: chr "comparison.ctrl.vs.g11"
  .. ..$ AlignSubspace.cca   :List of 9
  .. .. ..$ reduction.type    : chr "cca"
  .. .. ..$ grouping.var      : chr "stim"
  .. .. ..$ dims.align        : int [1:20] 1 2 3 4 5 6 7 8 9 10 ...
  .. .. ..$ num.possible.genes: num 2000
  .. .. ..$ num.genes         : num 30
  .. .. ..$ show.plots        : logi FALSE
  .. .. ..$ verbose           : logi TRUE
  .. .. ..$ ...               : symbol 
  .. .. ..$ time              : POSIXct[1:1], format: "2019-01-05 18:35:41"
  .. ..$ RunTSNE             :List of 13
  .. .. ..$ reduction.use  : chr "cca.aligned"
  .. .. ..$ cells.use      : NULL
  .. .. ..$ dims.use       : int [1:20] 1 2 3 4 5 6 7 8 9 10 ...
  .. .. ..$ genes.use      : NULL
  .. .. ..$ seed.use       : num 1
  .. .. ..$ tsne.method    : chr "Rtsne"
  .. .. ..$ add.iter       : num 0
  .. .. ..$ dim.embed      : num 2
  .. .. ..$ distance.matrix: NULL
  .. .. ..$ reduction.name : chr "tsne"
  .. .. ..$ reduction.key  : chr "tSNE_"
  .. .. ..$ ...            :length 1, mode "...": TRUE
  .. .. ..$ time           : POSIXct[1:1], format: "2019-01-05 18:37:25"
  .. ..$ FindClusters.res.0.6:List of 21
  .. .. ..$ genes.use         : NULL
  .. .. ..$ reduction.type    : chr "cca.aligned"
  .. .. ..$ dims.use          : int [1:20] 1 2 3 4 5 6 7 8 9 10 ...
  .. .. ..$ k.param           : num 30
  .. .. ..$ plot.SNN          : logi FALSE
  .. .. ..$ prune.SNN         : num 0.0667
  .. .. ..$ print.output      : logi TRUE
  .. .. ..$ distance.matrix   : NULL
  .. .. ..$ save.SNN          : logi FALSE
  .. .. ..$ reuse.SNN         : logi FALSE
  .. .. ..$ force.recalc      : logi FALSE
  .. .. ..$ nn.eps            : num 0
  .. .. ..$ modularity.fxn    : num 1
  .. .. ..$ resolution        : num 0.6
  .. .. ..$ algorithm         : num 1
  .. .. ..$ n.start           : num 100
  .. .. ..$ n.iter            : num 10
  .. .. ..$ random.seed       : num 0
  .. .. ..$ temp.file.location: NULL
  .. .. ..$ edge.file.name    : NULL
  .. .. ..$ time              : POSIXct[1:1], format: "2019-01-05 18:37:25"
  ..@ kmeans      : NULL
  ..@ spatial     :Formal class 'spatial.info' [package "Seurat"] with 4 slots
  .. .. ..@ mix.probs    :'data.frame': 3171 obs. of  1 variable:
  .. .. .. ..$ nGene: int [1:3171] 1386 3798 1877 4852 1718 1882 2263 2217 1882 5222 ...
  .. .. ..@ mix.param    :'data.frame': 0 obs. of  0 variables
Formal class 'data.frame' [package "methods"] with 4 slots
  .. .. .. .. ..@ .Data    : list()
  .. .. .. .. ..@ names    : chr(0) 
  .. .. .. .. ..@ row.names: int(0) 
  .. .. .. .. ..@ .S3Class : chr "data.frame"
  .. .. ..@ final.prob   :'data.frame': 0 obs. of  0 variables
Formal class 'data.frame' [package "methods"] with 4 slots
  .. .. .. .. ..@ .Data    : list()
  .. .. .. .. ..@ names    : chr(0) 
  .. .. .. .. ..@ row.names: int(0) 
  .. .. .. .. ..@ .S3Class : chr "data.frame"
  .. .. ..@ insitu.matrix:'data.frame': 0 obs. of  0 variables
Formal class 'data.frame' [package "methods"] with 4 slots
  .. .. .. .. ..@ .Data    : list()
  .. .. .. .. ..@ names    : chr(0) 
  .. .. .. .. ..@ row.names: int(0) 
  .. .. .. .. ..@ .S3Class : chr "data.frame"
  ..@ misc        : NULL
  ..@ version     :Classes 'package_version', 'numeric_version'  hidden list of 1
  .. ..$ : int [1:3] 2 3 4
seurat scRNA-seq CCA • 3.7k views
ADD COMMENT
0
Entering edit mode

In the continuation of my previous message, if I may rephrase the question above; I would appreciate having your insights :)

After following the tutorial that is available at : https://satijalab.org/seurat/immune_alignment.html, the questions are :

1 -- after running " immune.combined <- RunCCA(ctrl, stim, genes.use = genes.use, num.cc = 30)"

in @data and @scale.data, we have the normalized data and the scaled data of the samples as available in the objects "ctrl.data", and "stim.data", correct ? Or these data were modified by CCA algorithm ?

2 -- I could see that the command :

"immune.combined <- AlignSubspace(immune.combined, reduction.type = "cca", grouping.var = "stim", dims.align = 1:20)"

changes only the @scale.data. and not the normalized values in @data : is this expected ?

in which slot could i find the corrected/CCA-aligned "normalized data" of those 2 samples ?

thanks a lot !

ADD REPLY
1
Entering edit mode
6.0 years ago

Had a similar question before and raised an issue here, https://github.com/satijalab/seurat/issues/283 Hope it helps.

ADD COMMENT
0
Entering edit mode

Thanks a lot, Avi. Yes, it is very helpful indeed.

After extracting the NORM.DATA and SCALE.DATA for a few cells in the original matrix, and comparing the expression values at different steps in the algorithm :

-- indeed I have not seen any changes in the numerical values in @DATA (there is no batch-correction)

-- the expression values in the @SCALE.DATA change after runCCA() for some cells ...

ADD REPLY
0
Entering edit mode
6.0 years ago
igor 13k

There are no "corrected" counts after CCA. CCA is used as an alternate dimensionality reduction. Your Seurat object now has cca and cca.aligned in the dr slot. You can think of it as PCA. After you run PCA, your counts matrix is still the same, but you now have an additional PC matrix.

ADD COMMENT
0
Entering edit mode

Thank you Igor .. oh well, as I am not a statistician, my thought was that AlignSubspace() function provides also "corrected" counts, as mnnCorrect() or Combat() would do.

however, I can see that RunCCA() change the expression values in the @scale.data for some cells : if I may ask, how does it do it ? thanks a lot !

ADD REPLY
0
Entering edit mode

The CCA process removes a small fraction of cells. Then, the new matrix is re-scaled. Thus, the values may change.

ADD REPLY
0
Entering edit mode

Thank you, Igor. If I may add please a follow up question : for batch correction in scRNA-seq (when comparing multiple cell treatments), which algorithm would you recommend ? mnnCorrect() in SCRAN, combat() in SVA, or any other algorithm ? thanks a lot !

ADD REPLY
0
Entering edit mode
6.0 years ago
Bogdan ★ 1.4k

Thanks a lot, Avi. Yes, it is very helpful indeed.

After extracting the NORM.DATA and SCALE.DATA for a few cells in the original matrix, and comparing the expression values at different steps in the algorithm :

-- indeed I have not seen any changes in the numerical values in @DATA (there is no batch-correction)

-- the expression values in the @SCALE.DATA change only after runCCA() for some cells ..

ADD COMMENT

Login before adding your answer.

Traffic: 3580 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6