Same Values In Limma/Microarray Differential Expression
0
0
Entering edit mode
5.9 years ago
Wan Fahmi • 0

Hello, I run limma for the differential expression of microarray microRNA data. I just wondering why am I getting the same value for the top list at least for 20 - 50 probeset. Is this a weird output from limma?

The code as below:

dat <- read.celfiles(list.celfiles("raw_data_dir"))
eset <- oligo::rma(dat)
design <- model.matrix(~0+Exp)
colnames(design)
fit <- lmFit(eset, design)
fit <- eBayes(fit, trend=TRUE, robust=TRUE)
results <- decideTests(fit, adjust.method="BH",p.value=0.05,lfc=2)

Here is the output of limma:

> topTable(fit, coef=NULL, number=10, genelist=fit$genes, adjust.method="BH",
+          sort.by="B", resort.by=NULL, p.value=1, lfc=0, confint=FALSE)
                ExpEarlyOnset ExpLateOnset  AveExpr        F      P.Value    adj.P.Val
MIMAT0002177_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0003130_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0006344_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0008160_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0009329_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0013186_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0013886_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0014943_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0015904_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0023967_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
limma microarray differential expression output • 1.1k views
ADD COMMENT
0
Entering edit mode

This should be a Question, not a Forum discussion. I've made the changes now, but please be more mindful in the future.

ADD REPLY
0
Entering edit mode

There is a previous answer HERE; however, in your case, both the p- and adjusted p-values are the same.

I have seen this in the past with datasets of low sample n. There could also be an issue with the probe design on the microarray that you're using.

One question: why are you using trend=TRUE and robust=TRUE?

ADD REPLY

Login before adding your answer.

Traffic: 2107 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6