How to plot Volcano plots for time course experiment: Omics data?
1
1
Entering edit mode
5.7 years ago
WUSCHEL ▴ 810

I have a normalized data frame for a timecourse experiment (MS/MS). Samples are named as Genotype_Time_Replicate (e.g. AOX_1h_4). Each sample has 4 replicates for each time point. (>1000 Genes/AGIs)

Sample data

df <- structure(list(AGI = c("ATCG01240", "ATCG01310", "ATMG00070"), aox2_0h__1 = c(15.79105291, 14.82652303, 14.70630068), aox2_0h__2 = c(16.06494674, 14.50610036, 14.52189807), aox2_0h__3 = c(14.64596287, 14.73266459, 13.07143141), aox2_0h__4 = c(15.71713641, 15.15430026, 16.32190068 ), aox2_12h__1 = c(14.99030606, 15.08046949, 15.8317372), aox2_12h__2 = c(15.15569857, 14.98996474, 14.64862254), aox2_12h__3 = c(15.12144791, 14.90111092, 14.59618842), aox2_12h__4 = c(14.25648197, 15.09832061, 14.64442686), aox2_24h__1 = c(15.23997241, 14.80968391, 14.22573239 ), aox2_24h__2 = c(15.57551513, 14.94861669, 15.18808897), aox2_24h__3 = c(15.04928714, 14.83758685, 13.06948037), aox2_24h__4 = c(14.79035385, 14.93873234, 14.70402827), aox5_0h__1 = c(15.8245918, 14.9351844, 14.67678306), aox5_0h__2 = c(15.75108628, 14.85867002, 14.45704948 ), aox5_0h__3 = c(14.36545859, 14.79296855, 14.82177912), aox5_0h__4 = c(14.80626019, 13.43330964, 16.33482718), aox5_12h__1 = c(14.66327372, 15.22571466, 16.17761867), aox5_12h__2 = c(14.58089039, 14.98545497, 14.4331578), aox5_12h__3 = c(14.58091828, 14.86139511, 15.83898617 ), aox5_12h__4 = c(14.48097297, 15.1420725, 13.39369381), aox5_24h__1 = c(15.41855602, 14.9890092, 13.92629626), aox5_24h__2 = c(15.78386057, 15.19372889, 14.63254456), aox5_24h__3 = c(15.55321382, 14.82013321, 15.74324956), aox5_24h__4 = c(14.53085803, 15.12196994, 14.81028556 ), WT_0h__1 = c(14.0535031, 12.45484834, 14.89102226), WT_0h__2 = c(13.64720361, 15.07144643, 14.99836235), WT_0h__3 = c(14.28295759, 13.75283646, 14.98220861), WT_0h__4 = c(14.79637443, 15.1108037, 15.21711524 ), WT_12h__1 = c(15.05711898, 13.33689777, 14.81064042), WT_12h__2 = c(14.83846779, 13.62497318, 14.76356308), WT_12h__3 = c(14.77215863, 14.72814995, 13.0835214), WT_12h__4 = c(14.70685445, 14.98527337, 16.12727292), WT_24h__1 = c(15.43813077, 14.56918572, 14.92146565 ), WT_24h__2 = c(16.05986898, 14.70583866, 15.64566505), WT_24h__3 = c(14.87721853, 13.22461859, 16.34119942), WT_24h__4 = c(14.92822133, 14.74382383, 12.79146694)), class = "data.frame", row.names = c(NA, -3L))

How can I plot volcano plots for different comparisons;

i.e.

 ***'AOX2_0h__vs_WT_0h_', 
'AOX2_12h__vs_WT_12h_', 
'AOX2_24h__vs_WT_24h_', 
    'AOX5_0h__vs_WT_0h_', 
'AOX5_12h__vs_WT_12h_',
 'AOX5_24h__vs_WT_24h_', 
    'AOX2_0h__vs_AOX5_0h_', 
'AOX2_12h__vs_AOX5_12h_', 
'AOX2_24h__vs_AOX5_24h_'***

Also at the end, can I get a summary table of the statistics.

Could anyone help with this, please!

P.S: I did this in DEP package, but after I manually worked on the data frame (in Excel; after extract by df_import <- as.data.frame(assays(df) it's no more in (SummarizedExperiment) format to work with those functions.

R gene RNA-Seq Proteomics • 1.5k views
ADD COMMENT
2
Entering edit mode
5.7 years ago

A Volcano Plot just requires p-values and fold changes.

From where did you get your data? - it looks to be already normalised. Which program did you use?

Here is the data, for everyone else:

df
        AGI aox2_0h__1 aox2_0h__2 aox2_0h__3 aox2_0h__4 aox2_12h__1 aox2_12h__2
1 ATCG01240   15.79105   16.06495   14.64596   15.71714    14.99031    15.15570
2 ATCG01310   14.82652   14.50610   14.73266   15.15430    15.08047    14.98996
3 ATMG00070   14.70630   14.52190   13.07143   16.32190    15.83174    14.64862
  aox2_12h__3 aox2_12h__4 aox2_24h__1 aox2_24h__2 aox2_24h__3 aox2_24h__4
1    15.12145    14.25648    15.23997    15.57552    15.04929    14.79035
2    14.90111    15.09832    14.80968    14.94862    14.83759    14.93873
3    14.59619    14.64443    14.22573    15.18809    13.06948    14.70403
  aox5_0h__1 aox5_0h__2 aox5_0h__3 aox5_0h__4 aox5_12h__1 aox5_12h__2
1   15.82459   15.75109   14.36546   14.80626    14.66327    14.58089
2   14.93518   14.85867   14.79297   13.43331    15.22571    14.98545
3   14.67678   14.45705   14.82178   16.33483    16.17762    14.43316
  aox5_12h__3 aox5_12h__4 aox5_24h__1 aox5_24h__2 aox5_24h__3 aox5_24h__4
1    14.58092    14.48097    15.41856    15.78386    15.55321    14.53086
2    14.86140    15.14207    14.98901    15.19373    14.82013    15.12197
3    15.83899    13.39369    13.92630    14.63254    15.74325    14.81029
  WT_0h__1 WT_0h__2 WT_0h__3 WT_0h__4 WT_12h__1 WT_12h__2 WT_12h__3 WT_12h__4
1 14.05350 13.64720 14.28296 14.79637  15.05712  14.83847  14.77216  14.70685
2 12.45485 15.07145 13.75284 15.11080  13.33690  13.62497  14.72815  14.98527
3 14.89102 14.99836 14.98221 15.21712  14.81064  14.76356  13.08352  16.12727
  WT_24h__1 WT_24h__2 WT_24h__3 WT_24h__4
1  15.43813  16.05987  14.87722  14.92822
2  14.56919  14.70584  13.22462  14.74382
3  14.92147  15.64567  16.34120  12.79147
ADD COMMENT
0
Entering edit mode

Hi Kevin,

Yes. These are my data and I've normalized. I used DEP Package in bioconductor.

ADD REPLY
1
Entering edit mode

Cool, did you not look here: https://bioconductor.org/packages/release/bioc/vignettes/DEP/inst/doc/DEP.html#differential-enrichment-analysis

You need to perform the differential enrichment analysis.

To generate a volcano, you could then use my package: EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling

ADD REPLY
0
Entering edit mode

Thank you, Kevin. Yes, I had a look at that. But I want to perform it in another standard statistical procedure. After data Imputation step from DEP package.

ADD REPLY
1
Entering edit mode

Okay, could just use non-parametric t-test, e.g., Wilcoxon Signed Rank test.

ADD REPLY

Login before adding your answer.

Traffic: 1685 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6