How to I convert a 2D sdf format file into a correct 3D pdb format structure (to be used in docking with a protein). The compound is Ruthenium Red and the wikipedia and Pubchem link is given below. Please take the complex structure of RR into account while giving suggestions, I mean how to handle the Cl- ions, etc. What should be correct structure to be used in docking?
I just ran it on a molfile obtained from this page and it worked fine.
The "correct" structure for docking is a more complicated question and one that you will have to investigate for yourself as part of your docking procedure (e.g. generating conformers).
I'd suggest you first carefully check the documentation of your docking software to see whether it has a remote chance of getting reasonable scores when just one bond behind the outer shell of the docked complex heavy metal atoms are lurking, mixing in d-orbital contributions and other goodies... this is definitely not a standard system for routine docking studies.
If you use an unchecked (and probably only marginally optimized) OpenBabel or ChemExper structure of a multi-core ruthenium complex for a docking (or any other) study, you do not know what you are doing. Sorry to sound harsh, but this approach is incredibly naive. Most docking and coordinate generation/optimization algorithms are simply not parameterized for this kind of compound.
Addinf to Wolf's comment, you not only need a structure but most likely a topology. And starting with the ions in the center of the complex, it will be tough. Most automatic topology builders will allow only 4 bonds per atoms for example.. It's possible, but very tough. I would consider changing these ions for something "similar" and parametrized and see if you get any decent results this way first..
I thank Wolf Ihlenfeldt, João Rodrigues, neilfws for their insightful replies. All the comments had addressed different practical issues and limitations in this case.
dimkal has provided me with a 3D strc of the compound. He has used Maestro to generate 3D from 2D file obtained in the above link given by neilfws. The structure looks fine (as we don't have maestro in our dept. I can't use that strc) but 1 of my friend in my institute suggested me to run optimization in 'gaussview' to get optimized structure with proper charge. Would you guys like to comment on this?
I had to dock a protein to a Vanadium compound. Since there was no topology whatsoever, I started by creating the parameters for the organic part of the compound with PRODRG. I then Pymol-built the rest of the ligand (Vanadium and a few coordinating waters) and restrained the bonds between the several "pieces" in the docking software itself. The Vanadium I was able to model because I had access to the source of the docking program (HADDOCK). After the topology for the ion was there, I ran the docking with the compound and it was pretty stable. However, the electrostatics were horrible!
This was likely due to bad parameterization and a very very rough strategy. Still, it corroborated the experimental results, so I was happy with the result, although I wouldn't trust the structure at all. Pulling such a "Macgyver" might not be the best thing but it might give you some hints. I'd say, first minimize the compound with Gaussian to get at least a stable conformation. Then if you can, either use a program that supports your ion, or try to substitute it for another. In this project I was involved, a colleague ran AutoDock using Phosphorous instead of Vanadium. I can't help further !
thanks a lot. I think u have generated this using Ligprep in maestro. However our institute haven't purchased maestro. though it will help me in having an idea about the 3D strc but still need to find out free tools for converting 2D to 3D.
u can use chemsketch(freely available) to draw the structure and further do its 3D optimization and then save file in MDL(V2000) format then with help of open babel(free) u can convert it into pdb.
Actually I downloaded the mol file from the website and converted it to pdb with Maestro. I tried converting SMILES string (from wikipedia page) to 3d structures using LigPrep and the it failed due to unknown Ruthenium atom type (Schrodinger tools are developed to work with organic materials only, for now).
PDB format is no more "3D" than SDF is "2D". They are both file formats. Edited your title to reflect this.
yes, u r right.thanks.
Hey can you suggest me code for sdf to shape file