Individual genes plots after batch correction with Deseq2
1
1
Entering edit mode
5.5 years ago
Eugene A ▴ 190

Hi everyone, I'm performing analysis of some RNAseq samples, and currently trying to cope with batch effect.plotting PCA of vsd transformed data, I can clearly see two batches which are differ fromt the others.

plotPCA(vsd, intgroup = c('batch'),ntop= 34085)

PCA

If I'm not mistaken, then for DE expression analysis I could use design formula of dds function, to reduce batch effect:

dds <- DESeqDataSetFromMatrix(countData = counts, colData = coldata, design =~ batch + type)
dds <- DESeq(dds)
vsd <- varianceStabilizingTransformation(dds, blind = TRUE)

But I also would like to visualise results of batch correction. For PCA plot I could simply follow the DESeq2 manual and just perform limma batch effect removal:

mat <- assay(vsd)
mat <- limma::removeBatchEffect(mat, vsd$batch)
assay(vsd) <- mat
plotPCA(vsd, intgroup = c('batch'),ntop= 34085)

Which gives me a nice results: batch corrected PCA

But now I'd like to visualise expression of individual genes of interest. I could use vsd transforemd data, but these numbers mask the actual count numbers, therefore laking info on actual level of gene expression, which I'd like to preserve. expression of gene X fo given conditions, vsd transformed data, limma correction

So what would be the better solution here? Could I use limma removeBatchEffect() on normalised count table, maybe?

Thanks!

RNA-Seq DESeq2 R • 4.6k views
ADD COMMENT
1
Entering edit mode

Please see How to add images to a Biostars post to add your images properly. You need the direct link to the image, not the link to the webpage that has the image embedded (which is what you have used here)

ADD REPLY
0
Entering edit mode

What do you mean by but these numbers mask the actual count numbers?

ADD REPLY
0
Entering edit mode

Hi! I meant that after vsd transformation, genes with let say 1000 and 10 reads will be at the same scale. Nevertheless, the gene with 1000 reads was, probably, detected with higher accuracy, so I'd like to preserve such info. May be for this I should somehow switch to TPMs, but I'd like to avoid it for analysis transparence.

Eugene

ADD REPLY
0
Entering edit mode

Hi Eugene,

how did you generate the box plot from the vsd data? thanks,

ADD REPLY
0
Entering edit mode

Looks like custom code using ggplot2

ADD REPLY
0
Entering edit mode

something like this (given matrix with row - gnes, sample - columns):

 pritty_boxplot <- function(matrix, masker, row, deseq_res = FALSE){
          #print nice boxplot for given row in dataframe (matrix)
          #masker - columns lables

          if(!deseq_res){
                 value <- as.numeric(as.vector(unlist(matrix[row,])))
          }else{
                 value <- as.vector(unlist(counts(matrix[row], normalized = TRUE)))
                  }
         data <- data.frame(masker,value)
         data$lab <- colnames(matrix)
         ggplot(data, aes(y=value,x = masker ,fill=masker)) + geom_boxplot(outlier.shape = NA) +
                    geom_point(position = position_jitter(w = 0.2,seed = 2))+ 

         #to label points on the plot uncomment
         #geom_text(aes(label=lab),position =position_jitter(w = 0.2,seed = 2) ,angle=30) + 

         #scale_y_log10() + 
         xlab('') + ylab(row)
       }
ADD REPLY
0
Entering edit mode

Hi! I want to know how you made this boxplot, I saw the script that you used for that but a couldn't get some things. I guess that you converted vst object into matrix called "matrix", but what means "masker" and "row" and also that thing of "deseq_res = FALSE" in the script? I would appreciate if you could explain this for me, I am new in this! Thanks a lot! n_n

ADD REPLY
0
Entering edit mode

matrix - is either count matrix or Deseq object - if later is true - set deseq_res = True

row - gene name you whant to plot 'RAG1'

masker - vector of the length == number of columns in your matrix, which contain group names you whant to see on a chart - c('contr', 'contr', 'contr', 'exp', 'exp') for example (in given example your matrix might have the following colnames: c('control_1', 'control_2', 'control_3', 'experiment_1', 'experiment_2')

ADD REPLY
2
Entering edit mode
5.5 years ago
ATpoint 85k

vst transforms to approximately log2-scale, that is simply a data transformation to allow a wide range of counts to fit on a narrow scale rather than having counts spread between 0 and numbers in the hundreds-of- thousands.

ADD COMMENT
0
Entering edit mode

Thanks for the answer!! Shame but it did not occur to me that vst is indeed that much close to the log transformation. Best, Eugene

PS I'd mark your comment as an answer, if I could

ADD REPLY

Login before adding your answer.

Traffic: 2452 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6