Hi all, I am trying to complete a Gene ontology and KEGG pathway analysis through goana and kegga functions of limma. The text below is the filtered output of DE genes from DESeq2
log2 fold change (MLE): condition M vs control
Wald test p-value: condition M vs control
DataFrame with 1511 rows and 9 columns
baseMean log2FoldChange lfcSE stat pvalue padj symbol entrezgene logFC
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <factor> <character> <numeric>
1190007I07Rik 78.4679845005768 -1.17995124143836 0.31699917398998 -3.72225336295565 0.000197452744400775 0.00240695364433439 1190007I07Rik 544717 -1.17995124143836
1600014C10Rik 3696.58126211061 0.657830466659395 0.09968428410719 6.59913919783016 4.13551890257961e-11 2.76569659480879e-09 1600014C10Rik 72244 0.657830466659395
1700029J07Rik 133.493553811774 -0.962821564948145 0.246217433451692 -3.91045244624018 9.21233965087002e-05 0.00127090664215766 1700029J07Rik 69479 -0.962821564948145
1700086O06Rik 93.3960559687328 0.801707051597142 0.281304015805017 2.84996660749001 0.00437238192952888 0.0291164326068455 1700086O06Rik 73516 0.801707051597142
2310007B03Rik 35.1607046552806 8.26082328924723 1.97467867523721 4.18337595520693 2.87211834203099e-05 0.000481689912787682 2310007B03Rik NA 8.26082328924723
... ... ... ... ... ... ... ... ... ...
Zfp951 73.3826456533074 -1.70435017720272 0.326546008643756 -5.21932631876716 1.79575124493836e-07 5.60798908054179e-06 Zfp951 626391 -1.70435017720272
Zfp952 253.747912920015 -0.798965287664422 0.18487890835884 -4.32155995920137 1.5492993698427e-05 0.000276717089305083 Zfp952 240067 -0.798965287664422
Zfp958 202.398476730763 -0.666889456397734 0.19925444361697 -3.346923884316 0.000817136438920398 0.00767579781184775 Zfp958 233987 -0.666889456397734
Zfp976 147.014833887861 -0.68891219670236 0.245672538955508 -2.8041888590044 0.00504433480446008 0.0322716136961434 Zfp976 208111 -0.68891219670236
Zim1 142.21834247356 -1.26769251702809 0.239539774435816 -5.29220051247802 1.20853279701313e-07 3.87636894641962e-06 Zim1 22776 -1.26769251702809
For the annotation I used the entrezIDs of my file as vector and the resulted output seems ok
IDs<-DESeq2_filtered$entrezgene
go <- goana(IDs, species="Mm")
> topGO(go, n=10)
Term Ont N DE P.DE
GO:0051239 regulation of multicellular organismal process BP 3239 391 4.769277e-47
GO:0048731 system development BP 4726 493 1.748012e-42
GO:0007275 multicellular organism development BP 5304 522 3.877451e-38
GO:0048856 anatomical structure development BP 5810 554 4.949658e-37
GO:0032502 developmental process BP 6193 580 6.217343e-37
GO:0005515 protein binding MF 9005 757 5.128260e-35
GO:0030154 cell differentiation BP 4192 431 1.592004e-34
GO:0048869 cellular developmental process BP 4417 446 4.934208e-34
GO:0050793 regulation of developmental process BP 2713 316 5.712812e-34
GO:0005488 binding MF 13344 1006 7.299095e-33
However, I am getting only the DE column and not up and down annotations like the example below, WHICH OF COURSE IS NORMAL since in my vector there is no info regarding up and downregulation
> go <- goana(tr, species="Mm")
> topGO(go, n=15)
Term Ont N Up Down P.Up
GO:1903047 mitotic cell cycle process BP 608 8 84 0.975
GO:0007059 chromosome segregation BP 277 1 54 0.999
GO:0000070 mitotic sister chromatid segregation BP 138 0 38 1.000
GO:0000819 sister chromatid segregation BP 166 0 41 1.000
GO:0022402 cell cycle process BP 983 16 108 0.955
GO:0051301 cell division BP 524 4 74 0.998
GO:0000278 mitotic cell cycle BP 746 9 91 0.992
GO:0000280 nuclear division BP 342 6 58 0.815
GO:0098813 nuclear chromosome segregation BP 219 1 45 0.995
GO:0140014 mitotic nuclear division BP 239 2 47 0.977
GO:0000776 kinetochore CC 126 1 34 0.950
GO:0000775 chromosome, centromeric region CC 179 1 40 0.986
GO:0007049 cell cycle BP 1428 20 132 0.997
GO:0048285 organelle fission BP 387 9 58 0.554
GO:0042254 ribosome biogenesis BP 266 0 47 1.000
P.Down
GO:1903047 1.26e-21
GO:0007059 5.21e-21
GO:0000070 1.39e-20
GO:0000819 3.50e-20
GO:0022402 1.01e-19
GO:0051301 1.12e-19
GO:0000278 1.25e-19
GO:0000280 2.08e-19
GO:0098813 1.26e-18
GO:0140014 1.38e-18
GO:0000776 3.02e-18
GO:0000775 4.78e-18
GO:0007049 1.52e-17
GO:0048285 8.20e-17
GO:0042254 1.19e-16
I tried many different ways to pass the log2FC in coef parameter of goana, like using another vector, but unfortunately I didn t manage to get the expected output. Is it possible to create a two lists vector?
I would be grateful if someone has any idea or answer how to pass the log2FC in the GO analysis.
Thank you in advance