Hy guys, I have a dataframe like this:
Host Redundant
Cluster
>Cluster 0 Diabrotica_barberi NaN
>Cluster 1 Diabrotica_barberi NaN
>Cluster 2 Trichogramma_dendrolimi NaN
>Cluster 3 Formica_exsecta NaN
>Cluster 4 Formica_exsecta NaN
>Cluster 5 Nephila_plumipes NaN
>Cluster 6 Ceutorhynchus_obstrictus NaN
>Cluster 7 Spalangia_cameroni NaN
>Cluster 8 Diaphorina_citri NaN
>Cluster 9 Aleurodicus_dispersus NaN
>Cluster 10 Aleurodicus_dispersus NaN
>Cluster 11 Culex NaN
>Cluster 12 Chaetophiloscia_elongata NaN
>Cluster 13 Bemisia_tabaci NaN
>Cluster 14 Sogatella_furcifera NaN
>Cluster 14 Laodelphax_striatellus NaN
>Cluster 14 Laodelphax_striatellus NaN
>Cluster 14 Laodelphax_striatellus NaN
>Cluster 14 Laodelphax_striatellus NaN
>Cluster 14 Laodelphax_striatellus NaN
>Cluster 14 Laodelphax_striatellus NaN
>Cluster 14 Laodelphax_striatellus NaN
>Cluster 14 Laodelphax_striatellus NaN
>Cluster 14 Laodelphax_striatellus NaN
>Cluster 14 Laodelphax_striatellus NaN
>Cluster 14 Laodelphax_striatellus NaN
>Cluster 14 Sogatella_furcifera NaN
>Cluster 14 Laodelphax_striatellus NaN
>Cluster 14 Laodelphax_striatellus NaN
>Cluster 14 Laodelphax_striatellus NaN
>Cluster 14 Sogatella_furcifera NaN
>Cluster 14 Sogatella_furcifera NaN
>Cluster 15 Laodelphax_striatellus NaN
>Cluster 16 Chilo_suppressalis NaN
>Cluster 17 Metaphycus_ericeri NaN
>Cluster 18 Cotesia_glomerata NaN
>Cluster 18 Vespidae NaN
>Cluster 18 Vespidae NaN
>Cluster 19 Neoceratitis_asiatica NaN
>Cluster 19 Neoceratitis_asiatica NaN
>Cluster 19 Neoceratitis_asiatica NaN
>Cluster 20 Brontispa_longissima NaN
Where I have an Index "Cluster" and 2 columns (Host) and (Redundant).
I want to identify Index that has All hosts redundant, like Cluster 19 (considering that have several clusters with some redundant hosts like clusters 14 and 18, but I want assign as Redundant = True only clusters with all hosts equal.)
I know that df.drop_duplicates can remove redundant rows, but I want only to assign as True the "Redundant" column.
Can anyone explain to me how I can do this?
Thanks,
Exactly ! thanks !!!