Understand glm interaction command in plink2
0
0
Entering edit mode
4.9 years ago
jfertaj ▴ 110

Hi,

I have a very naive question but I don't quite understand the --parameters option for --glm in plink and the output of the logistic regresion.

I have a binary phenotype with 3 covariates HAP, BMI, and SEX

I have run plink2 with --glm interaction command and --parameters 1-4, 6 (1st run), and --parameters 1-6 (2nd round).

For the same SNP, obviously I get two outputs

1st run

22  25601465    rs113538872 C   T   ADD 958 0.0918304   2.2693  -1.05222    0.292698
22  25601465    rs113538872 C   T   SEX  958    0.768992    0.155539    -1.68881    0.0912562
22  25601465    rs113538872 C   T   HAP     958 1.32753 0.244267    1.15988 0.246096
22  25601465    rs113538872 C   T   BMI 958 0.989258    0.00873278  -1.23677    0.216172
22  25601465    rs113538872 C   T   ADDxSEX 958 2.242   0.67785 1.19107 0.233625
22  25601465    rs113538872 C   T   ADDxHAP 958 0.847376    1.019   -0.162522   0.870895

2nd run
22  25601465    rs113538872 C   T   ADD 958 0.372173    1.91994 -0.514807   0.606688
22  25601465    rs113538872 C   T   SEX  958    0.802544    0.151079    -1.45598    0.145398
22  25601465    rs113538872 C   T   HAP     958 1.32871 0.244131    1.16417 0.244356
22  25601465    rs113538872 C   T   BMI 958 0.989452    0.00872802  -1.2149 0.224403
22  25601465    rs113538872 C   T   ADDxHAP 958 0.765515    1.00908 -0.264802   0.791162

My question is:

can I interpret that the row with ADD in first run is the result of running the model TRAIT ~ SNP + SEX + HAP + BMI + SNP:SEX + SNP:HAP, and the row with ADD in the second run is the result of running this model TRAIT ~ SNP + SEX + HAP + BMI + SNP:HAP?

If I am correct, which model corresponds to ADDxHAP? or ADDxSEX?

plink • 1.9k views
ADD COMMENT

Login before adding your answer.

Traffic: 1925 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6