SVD singular values does not decrease rapidly, but slowly
0
0
Entering edit mode
4.2 years ago
Eric Wang ▴ 50

Hi all,

I used the svd() function (R language) to do SVD for the adjacency matrix of the protein-protein interaction network. However, the amount of information I get from singular values does not decrease rapidly, but slowly. I wonder why this is or is it reasonable?

For example:

The singular values from 1 to 100 are:

>   [1] 1.0074586 1.0070554 1.0063593 1.0059795 1.0055670 1.0053987 1.0051442
  [8] 1.0050790 1.0048908 1.0046617 1.0045478 1.0043112 1.0041319 1.0040420
 [15] 1.0039300 1.0035314 1.0033920 1.0033175 1.0032218 1.0029823 1.0028936
 [22] 1.0028239 1.0027816 1.0025896 1.0024478 1.0023495 1.0023147 1.0022161
 [29] 1.0021044 1.0019705 1.0018740 1.0017153 1.0016610 1.0015577 1.0014349
 [36] 1.0014156 1.0013212 1.0012127 1.0011715 1.0010235 1.0009524 1.0009048
 [43] 1.0008785 1.0008109 1.0007297 1.0006563 1.0005858 1.0005247 1.0004446
 [50] 1.0003866 1.0003573 1.0002762 1.0001141 1.0000404 0.9998874 0.9998039
 [57] 0.9997480 0.9997367 0.9995716 0.9995397 0.9994195 0.9993325 0.9992879
 [64] 0.9992163 0.9990943 0.9989908 0.9989651 0.9988125 0.9987165 0.9986866
 [71] 0.9986546 0.9985252 0.9983784 0.9982735 0.9981637 0.9980586 0.9978624
 [78] 0.9976935 0.9975900 0.9974132 0.9973097 0.9971579 0.9970841 0.9968607
 [85] 0.9966922 0.9965789 0.9964845 0.9962687 0.9960058 0.9958696 0.9955345
 [92] 0.9951622 0.9949442 0.9942553 0.9940109 0.9935174 0.9929589 0.9917055
 [99] 0.9903973 0.9802358

Best, Eric

R • 700 views
ADD COMMENT
0
Entering edit mode

Is the adjacency matrix a symmetric matrix of 0s and 1s?

ADD REPLY
0
Entering edit mode

Yes, It is a binary matrix. To be precise, I use the Laplacian matrix of the adjacency matrix as the input of SVD.

ADD REPLY

Login before adding your answer.

Traffic: 1562 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6