Hello, I have annotated one of the plant genome using Evidence modeller pipeline. Now I have raw output from evidence modeller. Can anybody kindly suggest how can I filter the genes which have score less than 1000.
I have EVM output file as below
!! Predictions spanning range 3415 - 137363 [R1]
# EVM prediction: Mode:STANDARD S-ratio: 2.52 11043-11477 orient(-) score(1246.00) noncoding_equivalent(495.34) raw_noncoding(495.34) offset(0.00)
11477 11043 single- 4 6 {SNAP_model.scaffold6_size143996-snap.2;SNAP}
# EVM prediction: Mode:STANDARD S-ratio: 1.00 20968-21183 orient(+) score(432.00) noncoding_equivalent(432.00) raw_noncoding(432.00) offset(0.00)
20968 21183 single+ 1 3 {GeneID_mRNA_scaffold6_size143996_6;GeneID}
# EVM prediction: Mode:STANDARD S-ratio: 1.00 21940-22362 orient(-) score(846.00) noncoding_equivalent(846.00) raw_noncoding(846.00) offset(0.00)
22362 21940 single- 4 6 {GeneID_mRNA_scaffold6_size143996_7;GeneID}
# EVM prediction: Mode:STANDARD S-ratio: 12.32 33363-34677 orient(+) score(21500.00) noncoding_equivalent(1745.00) raw_noncoding(2183.00) offset(438.00)
33363 33495 initial+ 1 1 {SNAP_model.scaffold6_size143996-snap.3;SNAP},{GeneID_mRNA_scaffold6_size143996_10;GeneID},{Augustus_model.g38.t1;Augustus}
33496 33611 INTRON {SNAP_model.scaffold6_size143996-snap.3;SNAP},{GeneID_mRNA_scaffold6_size143996_10;GeneID},{Augustus_model.g38.t1;Augustus},{ev_type:GeMoMa/ID=model.scaffold6_size143996.rna-XM_007036272.2_R0;GeMoMa}
33612 33741 internal+ 2 2 {SNAP_model.scaffold6_size143996-snap.3;SNAP},{GeneID_mRNA_scaffold6_size143996_10;GeneID},{Augustus_model.g38.t1;Augustus},{ev_type:GeMoMa/ID=model.scaffold6_size143996.rna-XM_007036272.2_R0;GeMoMa}
33742 33842 INTRON {SNAP_model.scaffold6_size143996-snap.3;SNAP},{GeneID_mRNA_scaffold6_size143996_10;GeneID},{Augustus_model.g38.t1;Augustus},{ev_type:GeMoMa/ID=model.scaffold6_size143996.rna-XM_007036272.2_R0;GeMoMa}
33843 34677 terminal+ 3 3 {SNAP_model.scaffold6_size143996-snap.3;SNAP},{GeneID_mRNA_scaffold6_size143996_10;GeneID},{Augustus_model.g38.t1;Augustus}
# EVM prediction: Mode:STANDARD S-ratio: 14.24 40247-42061 orient(-) score(32439.00) noncoding_equivalent(2277.99) raw_noncoding(2277.99) offset(0.00)
42061 40247 single- 4 6 {Augustus_model.g40.t1;Augustus},{SNAP_model.scaffold6_size143996-snap.4;SNAP}
# EVM prediction: Mode:STANDARD S-ratio: 2.41 46394-48564 orient(-) score(9677.00) noncoding_equivalent(4012.03) raw_noncoding(7194.39) offset(3182.36)
46879 46394 terminal- 4 6 {GeneID_mRNA_scaffold6_size143996_13;GeneID}
47512 46880 INTRON {GeneID_mRNA_scaffold6_size143996_13;GeneID}
48256 47513 internal- 4 6 {GeneID_mRNA_scaffold6_size143996_13;GeneID}
48366 48257 INTRON {Augustus_model.g41.t1;Augustus}
48429 48367 internal- 4 6 {Augustus_model.g41.t1;Augustus}
48510 48430 INTRON {Augustus_model.g41.t1;Augustus}
48564 48511 initial- 4 6 {Augustus_model.g41.t1;Augustus}
# EVM prediction: Mode:STANDARD S-ratio: 1.33 59853-60205 orient(+) score(730.00) noncoding_equivalent(549.66) raw_noncoding(865.75) offset(316.09)
59853 59913 initial+ 1 1 {Augustus_model.g43.t1;Augustus}
59914 60011 INTRON {Augustus_model.g43.t1;Augustus}
60012 60205 terminal+ 2 3 {GeneID_mRNA_scaffold6_size143996_14;GeneID}
I want to filter the records with score less than 1000.
Kindly help me to filter the records
Thanks in advance
out of curiosity, how did you get to the "1000" threshold?
From one of the research paper