Entering edit mode
3.9 years ago
diqixiaoyaoer
▴
20
Here is my question before:C: which kind of normalization is suitable for corr.test has been already finished.
Now I met a new problem with my result after I used corr.test with log2(fpkm+1) gene expression counts. That means I got many NAs after filter :
res<-res[abs(res$r)>0.65 & res$p<0.05,]
> res<-res[abs(res$r)>0.65 & res$p<0.05,]
> res
r p
Zhx3 0.7006877 1.584370e-28
Zhx2 0.6918752 2.025494e-27
Zfp747 0.7003759 1.736518e-28
Zfp46 0.6860264 1.045938e-26
Zcchc6 0.6585428 1.431681e-23
Zbtb7a 0.6552056 3.268403e-23
Zbtb46 0.6539389 4.459021e-23
Zbtb38 0.6721778 4.385947e-25
NA NA NA
Wwtr1 0.6562822 2.507464e-23
Wfdc1 0.6649660 2.836392e-24
Wdr44 0.6584699 1.457838e-23
Vps37c 0.6595098 1.124932e-23
NA.1 NA NA
NA.2 NA NA
NA.3 NA NA
NA.4 NA NA
NA.5 NA NA
NA.6 NA NA
NA.7 NA NA
NA.8 NA NA
NA.9 NA NA
NA.10 NA NA
NA.11 NA NA
NA.12 NA NA
NA.13 NA NA
NA.14 NA NA
NA.15 NA NA
NA.16 NA NA
NA.17 NA NA
NA.18 NA NA
NA.19 NA NA
NA.20 NA NA
Is there anything wrong? Should I think that I can filter the NAs only ? Is't that right with NAs in my corr.test(log2(fpkm+1)) results ?
I need your help. Vary thankful.