How to deal with the NA results in corr.test using log2(x+1)?
1
0
Entering edit mode
3.9 years ago

Here is my question before:C: which kind of normalization is suitable for corr.test has been already finished.

Now I met a new problem with my result after I used corr.test with log2(fpkm+1) gene expression counts. That means I got many NAs after filter :

res<-res[abs(res$r)>0.65 & res$p<0.05,]

> res<-res[abs(res$r)>0.65 & res$p<0.05,]
> res
                 r            p
Zhx3     0.7006877 1.584370e-28
Zhx2     0.6918752 2.025494e-27
Zfp747   0.7003759 1.736518e-28
Zfp46    0.6860264 1.045938e-26
Zcchc6   0.6585428 1.431681e-23
Zbtb7a   0.6552056 3.268403e-23
Zbtb46   0.6539389 4.459021e-23
Zbtb38   0.6721778 4.385947e-25
NA              NA           NA
Wwtr1    0.6562822 2.507464e-23
Wfdc1    0.6649660 2.836392e-24
Wdr44    0.6584699 1.457838e-23
Vps37c   0.6595098 1.124932e-23
NA.1            NA           NA
NA.2            NA           NA
NA.3            NA           NA
NA.4            NA           NA
NA.5            NA           NA
NA.6            NA           NA
NA.7            NA           NA
NA.8            NA           NA
NA.9            NA           NA
NA.10           NA           NA
NA.11           NA           NA
NA.12           NA           NA
NA.13           NA           NA
NA.14           NA           NA
NA.15           NA           NA
NA.16           NA           NA
NA.17           NA           NA
NA.18           NA           NA
NA.19           NA           NA
NA.20           NA           NA

Is there anything wrong? Should I think that I can filter the NAs only ? Is't that right with NAs in my corr.test(log2(fpkm+1)) results ?

I need your help. Vary thankful.

R cor log2 • 831 views
ADD COMMENT
0
Entering edit mode
3.9 years ago

Who can give me some advice ?

ADD COMMENT

Login before adding your answer.

Traffic: 1700 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6