Fold Change Problem In Rankproduct Bioconductor Package
3
0
Entering edit mode
11.8 years ago
James ▴ 80

Hi All,

I wonder if anyone is familiar with the Bioconductor RankProduct package for ranking and obtaining differentiallly expressed genes. Some info about the software are as follows:

http://bioinformatics.oxfordjournals.org/content/22/22/2825.full

http://www.bioconductor.org/packages/release/bioc/manuals/RankProd/man/RankProd.pdf

http://www.bioconductor.org/packages/2.11/bioc/vignettes/RankProd/inst/doc/RankProd.pdf

I ran into some problems while using the program, maybe because of my little knowledge of R language. I tried to replicate the steps in the pdf files above with my own data. Although my own datasets were not in the afffy .cel files as in the examples, but only as rows and columns in a tab-delimited file. I have two conditions (1 and 2, replicate = 4 for each)

My codes are as follows:

library(RankProd)
library(preprocessCore)

#Read expression data
#gdata <- read.table(file="data2.txt", sep="\t", header=T) #9000 rows of genes X 8 columns of chips
gdata <- read.table(file="data2.txt", sep="\t", header=T, row.names=1) #9000 rows of genes X 8 columns of chips

#colnames(gdata)

# This vector contains the microarray sample names
SampleNames= names(data.frame(gdata[,-1]))
#names(datExpr)=gdata[,1]

# This vector contains the gene names
datExpr.gnames= gdata$GeneName

# Since the first column contains the gene names, exclude it.
# dataExp is then the matix required
datExpr=data.frame(gdata[,-1])

#convert data into matrix form
datExpr <- as.matrix(datExpr)

#data normalization - quantile normalization
#datExpr.log.norm <- normalize.quantiles((log2(datExpr)),copy=TRUE) #with logged data
datExpr <- datExpr.log.norm
#datExpr.norm <- normalize.quantiles(datExpr,copy=TRUE) #without logged data
#datExpr <- datExpr.norm


# Identify two class data - control/treatment (or condition 1/condition2)
nl <- 4
n2 <- 4
cl <- rep(c(0,1), c(nl, n2))

datExpr.cl <- cl

# data were generated under identical or very similar conditions except the
# factor of interest (e.g., control and treatment),
origin <- rep(1, nl + n2)

datExpr.origin <- origin

# Data anslysis
datExpr.sub <- datExpr[,which(datExpr.origin == 1)]
datExpr.cl.sub <- datExpr.cl[which(datExpr.origin == 1)]
datExpr.origin.sub <- datExpr.origin[which(datExpr.origin == 1)]

#Rank product analysis and output
#RP.out <- RP(datExpr.sub, datExpr.cl.sub, num.perm = 100, logged = TRUE,na.rm = FALSE,    plot = FALSE, rand = 123)

RP.out <- RPadvance(datExpr.sub, datExpr.cl.sub, datExpr.origin.sub, num.perm = 100,logged = TRUE,
                na.rm = FALSE, gene.names = datExpr.gnames, plot = FALSE,rand = 123)



# Output a table of the identified genes based on user-specified selection criteria
topGene(RP.out, cutoff = 0.05, method = "pfp", logged = TRUE,logbase = 2, gene.names = datExpr.gnames)

I did run the code, but my fold changes for differentially expressed genes in one condition VS the other were either 0's or infinities. I wonder if anyone with experience with this program can help me.

Thank you

James

r microarray • 7.9k views
ADD COMMENT
0
Entering edit mode

Cross-posted from SO: http://stackoverflow.com/questions/14868462/gene-ranking-microarray. We don't mind but we like to know :)

ADD REPLY
2
Entering edit mode
11.8 years ago
Michael 55k

If you ran the script exactly as above, then this is the culprit:

#datExpr.log.norm <- normalize.quantiles((log2(datExpr)),copy=TRUE) #with logged data
datExpr <- datExpr.log.norm

It looks like you tried a lot of things already (which is good), but in this case either both lines should be commented out (non normalized) with # or the comment in the first of the two lines removed (use normalized logged values, in this case you should still apply log()). Due to the comment, datExpr.log.norm is not defined and therefore datExpr is NULL after the asignment. The normalized option is better imo.

If you are still having problems, it is recommended to post some example data, or use an example dataset from the package.

ADD COMMENT
1
Entering edit mode
11.8 years ago
Thaman ★ 3.3k

If you want straightforward rankproduct result then look into the RankProdIt interactive web tool which also uses the R RankProd package. Further, normalization is important as Michael Dondrup mentioned. The result will something like this

enter image description here

ADD COMMENT
0
Entering edit mode
11.8 years ago
James ▴ 80

Thank you, Michael and Thaman. As I needed to carry out my analysis, I used RankProdIt as Michael suggested and that worked beautifully for my needs. I really appreciate your help guys!

ADD COMMENT
0
Entering edit mode

Your thanks is appreciated - as a comment under the answers, rather than as a new answer :)

ADD REPLY

Login before adding your answer.

Traffic: 1535 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6