Dear all,
I was working through RNA-seq data set from two stages (before differentiation and after differentiation) of cell line. I want to check for 585 genes (these genes are interesting for us) if expression is significantly higher after differentiation or not. I used t-test as well as Mann-Whitney U test (Wilcoxon rank-sum test) on FPKM values of these genes. The p values are -
0.14 (t-test)
8.1e-05 (MWW)
Questions
Which test should I use and why?
Is it normal to see such a difference in p values using t-test and MWW?
P.S: I know the assumptions behind the tests but I do not know if FPKM values are normally distributed or not.
EDIT: Below are the FPKM values of my 585 interesting genes:
FPKM_undiff FPKM_diff
0 0.00979993
0 0
0.0156791 0.00761548
0.0543874 0.129448
0 0
0 0
0.00650977 0
0 0.00981821
0.0082179 0
0 0
0 0.0275734
0 0
0 0
0.0506587 0.058278
0 0
0 0
0 0
0.0527133 0.0320534
0 0
0 0
0.0141636 0
0 0
0 0
0 0
0 0
0 0.021557
0.476441 0.74297
0 0.00216964
0 0
0 0.00171133
0.0711397 0.0782215
0 0
0 0
0 0
0 0
0 0
0 0
0.0129147 0.0265309
0 0
0 0
0.592774 2.19515
0 0
0 0
0 0
0 0
0.0029552 0.00374453
0 0
0 0
0 0
0 0.0281069
0 0
0 0
0 0
0 0.00266207
0 0
0.461615 0.160647
0 0
0 0
0 0.146067
0 0
0 0.0145832
0.116135 0.239599
5.1295 0.790805
0 0.00466653
0.0557738 0.163162
0.13616 0.168267
0.0515826 0.0217485
0 0
0.112333 0.0306879
0 0
0 0
0 0.0598548
0 0
0 0.00341391
0.0112512 0
0.011781 0.61845
0 0
0.00536391 0.239729
0.176625 0.346842
0 0
0.0409464 0.0518428
0 0
1.40836 1.88935
0 0
0.188303 0.821979
0 0.00674785
0 0
0 0.00221935
0.0470863 0.784393
0 0
0.0101794 0.00131401
0.025838 0.00624204
0.255868 0.192638
0.0138707 0.464247
0 0
0 0
0.213469 0.348231
0.0200612 12.1792
0 0
0.00560411 0.00690147
0.059252 0.0131399
0.44933 0.0823733
0 0
0.00920092 0.126886
0 0.0037034
0.0227527 0.0194174
0.0351402 0.0159705
0.215587 0.285912
0.00876542 0
2.42575 0.0361371
0 0.0972781
0 0
0 0
0.0204054 0.0103906
0 0.0189586
7.36312 12.6552
0 0
0.0327914 0.0167844
0.986454 17.8484
0.00113704 0.00612809
0 0
0.0134198 0.058368
0 0
0.200898 0.258552
0.0199969 0.0553026
0 0
0.167788 0.261856
0 0
0.0360742 1.08595
0 0.0136952
0.0223617 0.0473491
0 0
0 0
0.286363 3.29673
0 0.00604735
0 0
0 0
0 0
0.00245598 0.00656835
0.0832634 0.053754
0.00563902 0.00457595
0 0
0.00360985 0.00919395
0.526873 0.730862
0 0.0140973
0 0
0.0181377 0.179448
0 0
0 0.00564234
0.00314785 0.00195837
0 0.0104087
0 0.00234022
0 0
0.093442 0.00967311
0.102117 0.00501067
0 0
0.177181 6.46037
0 0.00332104
0 0
0.563838 0.0788021
0 0.0938891
0.257809 36.606
0.0134618 0.00168805
0.00327106 0
0.00386116 0.0191951
0.015911 0.2473
0 0
0 0
0.0159217 0.110809
0 0.00610845
0 0
0 0
0 0.0149144
0.0095157 0.033828
2.82654 2.90175
0.567591 0.173613
0.133945 0.390562
0.0268004 0.273638
0.0504087 1.11836
0 0
0.00709921 0.0171702
0 0
0.00338803 0
0.695089 0.755439
0 0.0368949
0 0.0398636
0.00910244 0.0114124
0 0
0 0.392474
0 0
0.00210047 0.00520475
0 0.00232866
2.29881 1.16059
0.553412 0.093849
0.0120985 0.217203
0.00173353 0.015531
0 0
0 0
0.00709787 0
0 0
35.4183 33.2559
0.0203704 0.0301657
0.0162436 0.382246
0.0814903 0.431288
0 0
0.854938 0.269161
0.279646 0.269814
0.0132792 0.0127739
0 0.00405924
0.433035 0.834682
0 0
0.127141 0.165564
0.00406106 2.79114
44.3045 37.3835
0.368794 0.800279
0 0.0107781
0.00246019 0
0 0.0647367
0.122162 0.0350259
0.00698102 0
0.0235323 0.0573162
0 0
0.553894 263.541
0.0275198 0.0110146
0 0
0.0135625 0.00461561
0.245475 0.234519
0.0482715 0.0783393
0 0.119063
0 0.00228496
0 0.00591806
0 0.240085
0.138895 0.479992
0 0
0.452653 0.298752
0.00089268 0.0123278
0.00664013 1.25859
0.0137128 0.0706789
0.107589 0.0148237
0 0.00244057
0 0
0 0
0 0
0.00884167 0
0 0
0 0
0 0
0 0
0 0.0465225
0 0
0 0
0.0127877 0.00759114
0 0
0 0
0.0143108 0.0290303
0.0048602 0.00625753
0 0
0 0
0 0
0 0
0.0378325 0
0 0
0.11311 0.0408646
0.0208299 0.0238735
0.00607765 0.088116
0.408866 0.364383
0.368514 0.00288614
0.0475567 0.608063
3.44219 1.36913
0.00347198 0.00409186
0.0999656 0.0372491
0.040979 0
0.00679074 0.00499061
0.0154534 0
0.0204074 0.0422706
47.0831 47.8712
0 0
0.00143883 0
0.172199 0.376105
0.0765674 0.200574
0 0.0039195
0.209268 78.8024
0.0228858 0.108583
0 0
0.005481 0.00224165
0.0451118 0.0906822
0.101011 1.81411
0.0155015 0.00612381
0 0
0 0
0.0104911 0.0664517
0.0049624 0.00603241
0.00279289 0.0147797
0.129573 0.0559773
4.26291 8.18277
0.00522598 0.0764129
0 0
0 0.00968798
0 0.333089
0 0
0.23777 0.279177
0.192399 0.367337
0.0059381 0.147093
0.0309991 0.0182781
0.00569411 0.00362466
0 0.1186
0.00621093 0
0.00603825 0
0 0
0 0.0154021
0 0
0.00628578 0.0869839
0 0.0313295
0.00126726 0
0 0
0 1.01982
0.0016646 0.00808306
1.49054 0.728432
0.142694 0.833148
0 0
0.0621361 0.10469
0 0
0 0
0.0663542 0.0534874
0.00541785 0.0265786
0.582843 0.126975
0 0
0 0
0 0.189247
0.0328527 0.0162086
0 0
0 0
0 0
7.89499 4.44444
0.00461955 0
0 0
0.0130804 0.93429
0 0.00416887
0.00356088 0
0.0137056 0.0665561
0.0026154 0
0.0260207 0.0953219
0.0880793 0.0107424
0 0
0 0
0 0
0 0
0.25522 0.290681
0.0788486 0.00761706
0 0.0543497
0 0
9.12539e-06 0.0104041
0.0144905 0.00751801
0 0.00294302
0.147805 0.0788936
0 0
0 0
0 0
0 0
0 0
0 0
0.0557738 0.163162
0 0
0.338455 0.0837984
0.0157758 0
0.257124 0.211645
8.25195 38.014
0.456382 0.934556
0.0368361 0.243147
0.284639 0.325576
0 0.00541464
0.00119835 0
0 0.127273
0.30078 0.118195
0 0.0139656
0.00144155 11.6424
0 0
0.335903 473.609
0 1.77205
0 0
0.00866648 0.108523
0 0.0261056
0.0130487 0.022707
5.01997 5.64537
1.21398 0.0723739
0.0224691 0.0315844
0 0
0 0
0 0.012496
0 0.00226908
0 2.70307
0.0928407 0.191784
0 0.00596784
0 0
0.00286748 0.0523854
0 0
0 0
0 0
0.0131631 6.16212
0 0.0239042
0 0.00508183
0 1.20761
0 0
0 0
0 0
148.358 149.648
148.358 149.648
148.358 149.648
148.358 149.648
148.358 149.648
148.358 149.648
148.358 149.648
148.358 149.648
148.358 149.648
148.358 149.648
148.358 149.648
148.358 149.648
148.358 149.648
148.358 149.648
0.240246 0.565728
0.335682 0.582158
0.0615637 0.121294
0.929209 2.11455
0.15134 0.0146172
0 0
0 0
0.00442694 0.00511991
0.0213365 0.00971155
0 0.267421
1.5106 3.01687
0.00566643 0.019987
0 0.0297383
2.03318 184.926
0.0141299 0.0169819
0.0785617 0.0235894
0.00904319 0.0242694
0 0
0 0.00636067
0.405022 0.763255
0 0
0.153281 0.342909
1.39708 1.66659
0 0.00453808
0.00501467 0
1.30329 0.626499
0 0
1.58934 2.5728
0.319493 0.228329
0.0426172 0.0312349
0 0
0.0259343 0.108931
0.287356 0.257748
0.0412072 1.49625
13.8724 7.79341
5.14581 0.624423
0.019759 0.0493204
5.02407 10.5572
0.0116082 0.104398
0 0
0.766728 0.123647
0 0
0.00406371 0
0.016961 5.35044
0 0.00240722
0 0.0123523
0.178006 28.1923
0.00956514 0.00577151
0 0.0950938
0.0262632 0.493054
0.0366789 2.30324
0 0
0.0272311 0.11721
0 0.0076969
0 0.00214225
0 0.0681147
0.0529286 1.22047
0 0
0 0
0 0
0 0
0 0.0407487
1.63428 2.24584
0 0
0.0141748 0.0180332
0.0108742 0.00545133
0 0
0.205214 0.279312
0 0
0 0.00356799
0 0.0449568
0.00551323 0.0304052
0.0566858 0.399034
3.64091 0.080254
0.0839108 0.016863
0.0183947 0.0515463
0 0.00321718
4.03906 9.39997
0 0.00142553
0 0
0.170233 3.4909
0 0.0209324
0 0.0298148
0.00533474 0.00226183
0 0.0119659
0 0
0.0854973 0.0886838
0 0.047859
0.00769751 0.0288787
0.12285 0.0170485
5.52833e-05 7.17087e-05
0.0118421 0
0 0
0.0100909 0.0222188
0.00700353 0.00223443
0 0.0241404
0 0
0.00942 0.00180392
0 0.00380445
0 0
0.00786214 0.00325225
0.0565028 30.6016
0.955844 0.850619
0 0
0.0014712 0.00461979
0 0
0 0
0.00897945 0.0304897
0.223273 0.0783447
0 0
0 0
0.0035911 0.908899
0 0
0.0017013 0.00225269
0 0.0194741
0 0.098015
0.0691567 0.140123
0 0
0.935291 2.34976
0.0120628 0.0101693
0.0066743 0.804577
0 0
0 0
0.0140528 0.0490567
0 0
0.0076138 0.0084168
0 0
0 0
0.0235345 2.44537
0 0
0.201207 0.131835
0 0.012587
0 0
3.2332 2419.1
25.3591 1848.09
1.24157 0.185647
0 0
0.0707284 0.380199
0.000926048 0.0291497
0.556667 258.285
0.00765224 0.0423483
0 0
0.071368 0.172312
0.283154 0.859825
0 0
0.00321627 0.0208772
0.0733062 0.035614
0.0428443 0.137591
0 0
0 0
0.0126421 0.0494119
0.103812 0.0389233
0 0.00153992
0.0640372 0.140712
0 0
0.00267758 0.710792
0 0
5.87483 20.4657
0.0127048 0.0583802
0.00750976 0.00219457
0 0
0.592349 0.386329
0 0
0.00407045 0
0 0.0393989
1.45026 1.18887
Here is the code which I used in R
t.test(int.genes[,1],int.genes[,2], paired=T)
p-value = 0.0633
wilcox.test(int.genes[,1],int.genes[,2], paired=T)
p-value < 2.2e-16
show us the data or it didn't happen
I have pasted the FPKM values of 585 genes and R code. Please have a look.
The way you are calculating your t-test is incorrect. The t-test has to be perform for every gene and not across a group of gene in two conditions. The way you are doing it now does not give a meaningful p-value.
I disagree, I think that it's a legitimate question to ask and with much solid statistical ground than t-test for each gene separately (which is not possible statistically). However, I think you should remove the 0 0 rows, i.e. remove missing data. An assumption he makes here is that values from both conditions come from the same distribution (mean and variance), this should be tested.
It's a legitimate question, but not the right method. A test cannot be applied like this. Read up on the test statistics if you are in doubt.
I still don't understand why not, he has 2 conditions and paired objects, and wants to know if the values in A are greater than in B. Why paired t-test or Wilcoxon won't fit here?
So if it is a legitimate question but not the right method, which method would you suggest?
What did you compare? Did you compare the differential expression of these genes to another (background) set of genes or the FPKMs in one condition to the FPKMs in another condition? If you did the second option than the test was not performed right, you should have used a paired test (like paired Wilcoxon). If you did the first then the results are indeed disturbing.
Thanks for the reply. I did the second option. Now I performed the paired test again. The p values are 0.18 for paired t-test and 1.6e-15 for paired Wilcoxon test (Wilcoxon signed-rank test). Do you prefer paired Wilcoxon over paired t-test in this case?
Still weird, I would check how the t-test you used estimates the variance and plot the values (condition A - condition B.) of all the genes to see if they are normally distributed around the 0 (otherwise every random group of genes will have significant results)
I used Q-Q plots and Shapiro-Wilk test to check the normality of the FPKM values. Indeed, they are not normally distributed. So, I think, I should use Wilcoxon signed-rank test?
non-parametric statistics makes less assumptions so it should theoretically always be preferred but it's weird that t-test gave such a different result. I would take a random set of genes and make these tests on them as well to see if the Wilcoxon can be trusted.