No Diffrently Expressed Mirna???
1
1
Entering edit mode
11.3 years ago
Sirus ▴ 820

Hi guys, I know this question mqybe look silly but it is taking me a lot of time. I have downoaded some miRNA expression data from the AML samples available on the webstie TCGA (Arround 18 samples). I calsified my samples to groups according to some criteria (aproximatly 4 samples per group), and did a simple diffrent expression analysis sing DESeq Here is the used code:

get.DiffrentlyExpressed<-function(counts,groups){
      library("DESeq")  
 my.design <- data.frame(row.names = colnames( counts ),condition = groups)  
 conds <- factor(my.design$condition) 
 cds <- newCountDataSet( counts, conds ) 
 cds <- estimateSizeFactors( cds )
 cds <- estimateDispersions( cds )
 sizeFactors( cds )

 groups<-factor(groups);
 result <- nbinomTest( cds, levels(groups)[1],levels(groups)[2] );
 result = result[order(result$padj), ]
 return(result)
}

I my data I have 705 miRNA, the problem is after doing the DE analysis I didn't ant DE miRNA (lmfit model didn't converge)

I tried to write my own t-test analysis but I got similar results (when using the Counts, none was DE, but when I used RPKM about 2 or 3 miRNA where DE between the diffrent groups). I used the following code for the t-test and multiple test correction,

get.DiffrentlyExpressedMiRNA<-function(counts, groups){

    require(qvalue);

    Pvals<- rep(0,nrow(counts));
    FC<-rep(0,nrow(counts));
    logFC<- rep(0,nrow(counts));

    groups<-factor(groups)
    grp1<-which(groups == levels(groups)[1]);
    grp2<-which(groups == levels(groups)[2]);

    for(i in 1:nrow(counts)){                
        Pvals[i]<-t.test(counts[i, grp1], counts[i, grp2])$p.value;
        FC[i]<- mean(counts[i,grp1]) / mean(counts[i,grp2]);
        logFC[i]<-log2(FC[i]);
    }

    nas<-which(!is.nan(Pvals));
    inf<-which(is.infinite(logFC))
    logFC[inf]<-0;
    results<-data.frame(miRNA_ID = rownames(counts)[nas], P_val= Pvals[nas], FC = FC[nas], log2FC= logFC[nas], q = qvalue(Pvals[nas])$qvalues);

    ord<-order(results$log2FC,decreasing=T);
    results<-results[ord,];
    return(results);    
}

How do you generally guys, analyse the miRNA data?

NB: I just have access to the level 3 data on TCGA (which means I just have the counts and RPKM for each miRNA)

Any help is apreciated. Thanks,

mirna tcga differential-expression differential-expression • 3.9k views
ADD COMMENT
3
Entering edit mode
11.2 years ago

I tend to filter out the miRNAs that don't have enough counts (say 200 total among all samples), since those are only going to mess with correction for multiple testing

countsAboveThreshold<-subset(countsMatrix,rowSums(countsMatrix)>minCount)
ADD COMMENT
0
Entering edit mode

Hi Jeremy, I removed the weakly expressed miRNA, I got some improvement but still no diffrently expressed miRNA. I think the problem is in the set that I selected. I will check further :)

ADD REPLY
0
Entering edit mode

another strategy is to normalize the mirna counts against housekeeping genes (are there housekeeping mirnas?) , but i've never tried that. http://pubs.rsc.org/en/content/articlelanding/2013/tx/c3tx50034a/unauth

ADD REPLY
0
Entering edit mode

Thanks, Jeremy I will take a look at that :)

ADD REPLY

Login before adding your answer.

Traffic: 1705 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6