Seurat - setting random seed for FindNeighbors, FindClusters
0
0
Entering edit mode
3.5 years ago
bsmith030465 ▴ 240

Hi,

I was trying to find clusters that will subsequently be used in 'clustree'. However, I cannot seem to set the random seed that would give the same results everytime I run the code. For example:

RESOLUTION_PARAMS <- seq(1.2,3,0.4)
SEED <- 12597
set.seed(SEED)
test1 <- FindNeighbors(seudat2, dims = 1:10,reduction="pca")
test1clust <- FindClusters(test1, resolution = RESOLUTION_PARAMS,reduction.type="pca",random.seed = SEED)

set.seed(SEED)
test2 <- FindNeighbors(seudat2, dims = 1:10,reduction="pca")
test2clust <- FindClusters(test2, resolution = RESOLUTION_PARAMS,reduction.type="pca",random.seed = SEED)

When I run this code, I seed to get different results:

>   identical(test1,test2)
[1] FALSE
>   identical(test1clust,test2clust)
[1] FALSE

I checked the 'FindNeighbors' documentation, and there doesn't appear to be a parameter to set the seed. What do I need to set/do?

thanks!

=============== My sessioninfo:

sessionInfo() R version 4.0.4 (2021-02-15) Platform: x86_64-apple-darwin17.0 (64-bit) Running under: macOS Big Sur 10.16

Matrix products: default LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale: [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets methods base

other attached packages: [1] clustree_0.4.3 ggraph_2.0.5 ggplot2_3.3.3 MAST_1.16.0
[5] SingleCellExperiment_1.12.0 SummarizedExperiment_1.20.0 Biobase_2.50.0 GenomicRanges_1.42.0
[9] GenomeInfoDb_1.26.7 IRanges_2.24.1 S4Vectors_0.28.1 BiocGenerics_0.36.1
[13] MatrixGenerics_1.2.1 matrixStats_0.58.0 patchwork_1.1.1 SeuratObject_4.0.0
[17] Seurat_4.0.1 dplyr_1.0.5

loaded via a namespace (and not attached): [1] Rtsne_0.15 colorspace_2.0-0 deldir_0.2-10 ellipsis_0.3.1 ggridges_0.5.3
[6] XVector_0.30.0 rstudioapi_0.13 spatstat.data_2.1-0 farver_2.1.0 leiden_0.3.7
[11] listenv_0.8.0 graphlayouts_0.7.1 ggrepel_0.9.1 fansi_0.4.2 codetools_0.2-18
[16] splines_4.0.4 polyclip_1.10-0 jsonlite_1.7.2 ica_1.0-2 cluster_2.1.2
[21] png_0.1-7 uwot_0.1.10 ggforce_0.3.3 shiny_1.6.0 sctransform_0.3.2
[26] spatstat.sparse_2.0-0 compiler_4.0.4 httr_1.4.2 backports_1.2.1 assertthat_0.2.1
[31] Matrix_1.3-2 fastmap_1.1.0 lazyeval_0.2.2 tweenr_1.0.2 later_1.2.0
[36] htmltools_0.5.1.1 tools_4.0.4 igraph_1.2.6 gtable_0.3.0 glue_1.4.2
[41] GenomeInfoDbData_1.2.4 RANN_2.6.1 reshape2_1.4.4 Rcpp_1.0.6 scattermore_0.7
[46] vctrs_0.3.7 nlme_3.1-152 lmtest_0.9-38 stringr_1.4.0 globals_0.14.0
[51] mime_0.10 miniUI_0.1.1.1 lifecycle_1.0.0 irlba_2.3.3 goftest_1.2-2
[56] future_1.21.0 MASS_7.3-53.1 zlibbioc_1.36.0 zoo_1.8-9 scales_1.1.1
[61] tidygraph_1.2.0 spatstat.core_2.1-2 promises_1.2.0.1 spatstat.utils_2.1-0 RColorBrewer_1.1-2
[66] reticulate_1.19 pbapply_1.4-3 gridExtra_2.3 rpart_4.1-15 stringi_1.5.3
[71] checkmate_2.0.0 rlang_0.4.10 pkgconfig_2.0.3 bitops_1.0-7 lattice_0.20-41
[76] ROCR_1.0-11 purrr_0.3.4 tensor_1.5 labeling_0.4.2 htmlwidgets_1.5.3
[81] cowplot_1.1.1 tidyselect_1.1.0 parallelly_1.24.0 RcppAnnoy_0.0.18 plyr_1.8.6
[86] magrittr_2.0.1 R6_2.5.0 generics_0.1.0 DelayedArray_0.16.3 DBI_1.1.1
[91] withr_2.4.2 pillar_1.6.0 mgcv_1.8-35 fitdistrplus_1.1-3 survival_3.2-10
[96] abind_1.4-5 RCurl_1.98-1.3 tibble_3.1.1 future.apply_1.7.0 crayon_1.4.1
[101] KernSmooth_2.23-18 utf8_1.2.1 spatstat.geom_2.1-0 plotly_4.9.3 viridis_0.6.0
[106] grid_4.0.4 data.table_1.14.0 digest_0.6.27 xtable_1.8-4 tidyr_1.1.3
[111] httpuv_1.6.0 munsell_0.5.0 viridisLite_0.4.0

seurat clustree • 1.8k views
ADD COMMENT

Login before adding your answer.

Traffic: 2079 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6