Hello,
I would like to identify DEGs using TPM values. I tried to use DESeq2, but I have the following problems:
- I am unable to add the row names to dds (i.e., GeneName column)
When I run the following command, I get NI vs INF, but I want INF vs NI.
head(results(dds)) log2 fold change (MLE): condition NI vs INF Wald test p-value: condition NI vs INF
When I run the following command, it seems that none of the genes are differentially expressed?
summary(res) out of 13537 with nonzero total read count adjusted p-value < 0.1 LFC > 0 (up) : 0, 0% LFC < 0 (down) : 0, 0% outliers [1] : 0, 0% low counts [2] : 0, 0%
Please find below my RStudio code. Any help would be greatly appreciated!
data <- read_xlsx('consolidated_E6_uniqueEntrez.xlsx', col_types = c("text", "text","numeric",
"numeric", "numeric", "numeric",
"numeric", "numeric", "numeric",
"numeric", "numeric", "numeric",
"numeric", "numeric", "numeric",
"numeric", "numeric", "numeric",
"numeric", "numeric", "numeric"))
countData = subset(data, select = -c(2:3,10:21))
countData[2:7] = round(countData[2:7])
head(countData)
condition <- factor(c("NI","NI","NI","INF", "INF", "INF"))
dds <- DESeqDataSetFromMatrix(countData[2:7], DataFrame(condition), ~ condition)
dds <- DESeq(dds)
res <- results(dds)
head(results(dds))
summary(res)
res <- res[order(res$padj),]
head(res)
Here is some sample data to be copy-pasted into Excel:
GeneName Ensembl Entrez Rep1_NI Rep2_NI Rep3_NI Rep1_2H Rep2_2H Rep3_2H Rep1_4H Rep2_4H Rep3_4H Rep1_24H Rep2_24H Rep3_24H Rep1_48H Rep2_48H Rep3_48H Rep1_72H Rep2_72H Rep3_72H
ND1 ENSCSAG00000000006 4097488 4110.730463 4131.993785 4087.582005 4024.139901 3851.016173 3757.790828 3998.049618 3912.999404 4044.403123 4526.664036 4633.834177 5047.25019 6134.65549 5925.493844 6407.851586 3567.479753 3915.825956 3493.691943
4097489 7202.293784 7505.274219 7416.532184 7261.130425 6914.710434 6902.883947 7142.045748 6900.201632 7338.265332 8034.619537 7921.774297 8323.872366 10253.41941 10260.34556 10739.36826 6348.270665 7162.65797 6755.730024
COX1 ENSCSAG00000000016 4097490 21384.45223 21987.93671 21825.5789 21617.45141 20763.02822 20915.73658 22630.16873 21491.28902 22610.08263 24445.68713 26301.14111 27767.59481 37523.96086 34038.05812 37527.05638 19097.41744 20777.49926 18706.34217
COX2 ENSCSAG00000000019 4097491 23095.60045 23542.92338 23418.81883 22767.2568 21760.67324 22149.33884 24579.50753 23361.15654 24872.55587 25057.28837 27954.21184 29220.84293 43074.0174 38003.93848 43583.93291 20638.99672 22222.78778 20745.37562
4097492 5089.669191 5363.956133 5042.436534 4889.031287 4756.58504 4702.559977 5432.475975 4357.91711 6333.815406 6000.407015 6427.774149 7794.755878 10305.94286 6906.059378 10511.36126 3642.25344 4610.064222 4170.488097
ATP6 ENSCSAG00000000022 4097493 9296.656979 9507.431938 9541.225027 9369.987036 9119.406172 9130.525392 9031.922461 8768.969377 9854.904055 10355.86243 10238.51812 10933.51711 15294.24182 15197.36213 15475.66016 7369.062066 8541.825339 7717.407252
COX3 ENSCSAG00000000023 4097494 18633.28087 19031.5007 18800.65399 18328.28186 17420.79453 17676.2335 19476.15652 18495.23372 17481.76947 18501.52107 21415.3908 22493.82674 29348.94285 26333.54602 29711.65716 15166.94307 15309.9478 13980.56502
ND3 ENSCSAG00000000025 4097495 6053.840221 6496.294811 6306.063948 6159.738491 5699.921284 5845.43029 6784.832132 6135.961202 6430.580503 6124.878577 7122.378002 7450.594629 9532.935006 8217.661519 9867.530632 4807.277917 5132.830172 4566.287442
ND4L ENSCSAG00000000027 4097496 3311.669848 3214.888318 3162.089408 3247.723677 3338.095974 3313.913594 3195.697588 3177.157622 3507.153985 3865.459905 3489.855648 3853.403791 4746.8711 4819.779155 5598.992146 3293.592594 3562.085461 3202.293475
4097497 3531.56501 3558.490838 3532.2502 3469.721939 3412.83731 3386.551035 3581.593146 3387.027005 3559.146834 3884.66661 4032.860009 4354.580206 5481.890311 5185.26059 6063.371589 3179.03591 3703.553617 3512.869858
ND5 ENSCSAG00000000032 4097498 3185.053547 3396.433059 3309.02917 3179.120118 3112.448217 3134.942829 3183.121599 3094.888274 3437.671457 3881.341634 3806.613015 4202.261961 4984.598775 4749.806669 5030.47665 2825.005634 3308.830413 3006.98428
ND6 ENSCSAG00000000033 4097499 2179.610931 2524.153988 2390.96798 2310.382064 2231.591578 2169.338037 2107.076037 2053.47766 2545.422104 3000.333837 2721.252442 2900.246292 3270.253013 3361.821955 3581.443632 2109.956144 2332.450964 2341.165057
CYTB ENSCSAG00000000035 4097500 6504.187555 6681.987408 6468.61815 6223.624596 6089.743156 6091.83994 6279.194574 5953.573005 6052.442338 6503.095228 6827.626412 7381.096164 9809.020695 9260.460982 10029.526 5083.416387 5866.879716 5378.585669
103214198 0 0 0 0 0 0.406842071 0 0 0 0 0 0 0 0 3.857021143 0 0 0
103214199 0.091602853 0 0.263525123 0 0 0.16810691 0 0 0 0.290650873 0.730208225 0 0 0 0 0 0 0
POMP ENSCSAG00000017967 103214204 250.8924746 235.8245571 246.6273473 233.3534873 232.5269866 266.9342397 259.9697477 253.8927513 340.9242996 261.0761231 225.8040377 224.7217782 172.1777868 223.572983 195.5672692 244.7094931 274.2675829 231.8107293
ENSCSAG00000017964 103214206 1.646489112 1.680412241 1.403453757 1.648370105 1.054760923 2.853723178 1.855713275 1.117336931 0.897245698 1.741406805 2.187486243 2.425307054 0.186223214 1.357711311 0.401598731 1.414298484 0.324851815 0.776316738
103214207 0 0 0.470966693 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
103214209 0 0 0 0.263890443 0 0.537479433 0 0.923908838 0.861849767 0 0 0 0 1.086791852 0 0.905670038 0 0
SLC46A3 ENSCSAG00000017966 103214210 1.107977247 1.653802677 2.257779593 1.871847614 2.088532074 1.906244843 1.826327794 2.330147525 1.494371469 1.97749775 2.760060372 1.836078442 3.907859803 3.083565603 3.01199048 2.569666833 3.65194041 4.852681273
SLC7A1 ENSCSAG00000017961 103214212 70.23190777 71.30655971 73.95672218 68.39453869 69.04207317 65.28071626 62.70838081 60.53020528 61.23602196 60.29275546 60.45525252 63.28088067 41.66788746 44.3756089 41.43542714 49.20232179 43.29114503 51.5730348
103214213 0 0 0 0 0 0 0 0 0 0 0 0 0.525761964 0 0 0 0 0
UBL3 ENSCSAG00000017959 103214215 22.18419275 26.83817721 19.19787962 27.7890055 21.11853668 27.80317337 31.83334586 23.32739321 26.00643845 33.47780795 20.12816908 45.19086965 39.25837851 48.18724552 47.06873259 27.60758582 27.58349793 33.40281859
KATNAL1 ENSCSAG00000017958 103214218 3.380910206 3.10551134 3.491484244 3.046295383 2.883710573 3.818183832 4.352800364 3.828607976 3.443888478 4.332237093 3.455228327 4.654514943 6.289869198 4.342740559 4.524733561 2.814770832 5.943266497 3.471377856
103214221 0 0.514441993 0 0 0 0 0 0.41188574 0 0.621422265 0.520404021 0 0 0 0 0 0 0
103214228 0.498806163 0.9163498 2.869953288 4.044945702 2.654816046 2.288486648 1.011943645 1.049021493 3.424955063 1.582684831 2.650807982 3.306375632 4.021257521 5.552827121 4.339148786 6.169877135 0.876846109 8.322492808
103214229 11.08863427 9.381277664 11.69667738 9.83341665 10.14686547 8.996639282 11.48472788 9.757625884 11.50656097 6.481195651 9.071869364 12.37926379 12.46810376 14.50976398 10.15376681 9.113822167 9.335926394 9.153220609
ALOX5AP ENSCSAG00000017950 103214231 5.123539849 4.344176832 3.779362354 3.551118312 1.748027026 3.978011358 2.798461439 2.486569466 4.252501525 1.875774614 1.047232783 0 0 0 0 0.609370581 0 0
103214236 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
103214237 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HSPH1 ENSCSAG00000017943 103214241 218.0021013 216.6297866 216.7488509 221.8750297 204.3250273 209.5838165 331.512267 316.7727395 323.2000169 246.9209433 257.3413029 279.2536375 328.3668074 303.1149774 353.6785115 302.1300487 324.8189134 318.7156268
TPM is not an acceptable input for DESeq2. I think you can get Limma to work on normalized data.
Please use the "code formatting" button (
101010
) so that your posts can be more readable in the future. I did it for you for this one time.