How do I make a ComplexHeatmap from this dataframe?
1
1
Entering edit mode
3.5 years ago
Pratik ★ 1.1k

Hey ya'll,

Struggling here.

The dataframe was generated using a new package called InterCom (https://github.com/saschajung/InterCom), which basically determines ligand receptor pairing and also together with sending and receiving cells using scRNA-seq data. Incredibly useful if you ask me.

Here is a sample of my data:

"score" "significance" "lig.rec.pop" "ligand.receptor"
25507.7307692308 0.950689655172414 "undef_acinar" "FSTL1_BMPR1A"
113286.378762542 0.994068965517241 "mesenchymal_acinar" "FSTL1_BMPR1A"
56944.7025939177 0.989103448275862 "endothelial_acinar" "FSTL1_BMPR1A"
24467.0634475014 0.94551724137931 "mesenchymal_acinar" "BMP4_BMPR1A"
45149.7188075585 0.985034482758621 "mesenchymal_acinar" "BMP4_BMPR2"
20099.7619047619 0.916 "blood_acinar" "IL1B_IL1R1"
19786.641 0.913310344827586 "alpha_acinar" "VTN_ITGAV"
56609.9870823529 0.989034482758621 "mesenchymal_acinar" "FN1_ITGAV"

The maximum score value is 6611701.91, and the score minimum value is 36320.27,

Could someone help me get started with a good way to scale the data (if I even need to?, and generate a ComplexHeatmap? My main struggle is figuring out how to get it into the format to plug it into ComplexHeatmap.

I was able to do it through ggplot2, but I want to do it through ComplexHeatmap as I think it is easier to add bells and whistles. The only reason I was able to do it using ggplot2 was because I specified the what x, y and scores to use:

  ggplot(hm, aes(x = ligand.receptor, y = lig.rec.pop, fill = score)) +
  geom_tile() + theme(axis.text.x = element_text(angle = 90))

Ideally, I would love a heatmap/plot like this:

enter image description here

I realize that adding the time points (ie. week 7 and 9) might be a matter of adding meta data. but really if someone could just help me get started - I would be grateful.

Thank you in advance!

Image Citation: Gonçalves, C.A., Larsen, M., Jung, S. et al. A 3D system to model human pancreas development and its reference single-cell transcriptome atlas identify signaling pathways required for progenitor expansion. Nat Commun 12, 3144 (2021). https://doi.org/10.1038/s41467-021-23295-6
scaling scale heatmap • 2.9k views
ADD COMMENT
1
Entering edit mode

Hi, Have you read the ComplexHeatmap manuals?

ADD REPLY
0
Entering edit mode

In all honesty, I have browsed through (I'll give another look), and have also looked through here: https://github.com/kevinblighe/E-MTAB-6141

My main struggle is getting the dataframe in the appropriate format for ComplexHeatmap? I have used the package before, simply just plugging in a gene-gene correlation matrix - that was straight-forward.

However, I am troubled here, because the dataframe isn't as simple as just plugging in the matrix with a simple function such as Heatmap(mymatrix)

Any help would be appreciated!

ADD REPLY
1
Entering edit mode

Can you provide the data via dput() so it is easy to copy/paste it?

ADD REPLY
0
Entering edit mode

Thank you for helping me out ATPoint.

Hope this is correct:

dput(head(hm, 100), file ="~/Projects/SCFPInterCom/table.txt")

Output:

structure(list(score = c(25507.7307692308, 113286.378762542, 
56944.7025939177, 24467.0634475014, 45149.7188075585, 20099.7619047619, 
19786.641, 56609.9870823529, 20740.8489473684, 37127.4633333333, 
22346.7266129032, 68718.2951162791, 18454.4553846154, 57107.785, 
51543.6245070423, 23787.9075, 21464.94, 47420.5779310345, 20391.693, 
18579.9489473684, 21711.9, 27910.0591304348, 38100.5562711864, 
20862.0802173913, 20609.3404054054, 61627.309141791, 223040.895, 
23133.6786545455, 129210.139459459, 28207.9302272727, 61495.0955134135, 
23739.3698372966, 18106.4491816694, 20509.0572867633, 20841.6063829787, 
22435.832398317, 111294.665918552, 20408.912743397, 19414.7661538462, 
254025.836174636, 19931.6435897436, 39863.2871794872, 36281.2738987508, 
46766.7871794872, 70548.9700149925, 70297.8571428571, 96201.4390448581, 
164237.412786797, 297523.296551724, 41698.1172413793, 61319.4744525547, 
42742.8909090909, 283918.87826087, 142715.093023256, 39795.9278350515, 
24200.7264957265, 63927.6, 42999.6913451512, 110959.097435897, 
45902.0961538461, 160793.934065934, 80543.0769230769, 84938.5494505494, 
47388.3076923077, 55956.9594017094, 48572.5981710597, 76779.8106508876, 
22605.1859596714, 33377.5314685315, 185820.123076923, 76495.249070632, 
28845.2884615385, 125076.153846154, 24057.0113122172, 31217.4082840237, 
24541.975708502, 25100.4615384615, 57054.2517482517, 36416.7212307692, 
32110.6923076923, 29391.2980769231, 29281.4579650179, 53206.3859128823, 
41147.9331103679, 67135.0142450142, 76821.3333333333, 27971.378952336, 
30231.3538461538, 54856.6538461538, 71593.8461538462, 50498.2272672383, 
24382.5562130178, 31260.2490384615, 115743.570303335, 35020.0118343195, 
48038.3513203215, 48219.3076923077, 25212.8111888112, 84515.9228626527, 
33226.3630769231), significance = c(0.950689655172414, 0.994068965517241, 
0.989103448275862, 0.94551724137931, 0.985034482758621, 0.916, 
0.913310344827586, 0.989034482758621, 0.921379310344828, 0.978275862068966, 
0.933103448275862, 0.991586206896552, 0.903724137931034, 0.989310344827586, 
0.987724137931035, 0.942137931034483, 0.92751724137931, 0.986275862068966, 
0.918827586206897, 0.904206896551724, 0.929034482758621, 0.959379310344828, 
0.979655172413793, 0.922413793103448, 0.920275862068966, 0.990344827586207, 
0.996689655172414, 0.937931034482759, 0.994551724137931, 0.960137931034483, 
0.990344827586207, 0.94151724137931, 0.900413793103448, 0.919586206896552, 
0.922413793103448, 0.933655172413793, 0.994, 0.918827586206897, 
0.910206896551724, 0.997103448275862, 0.914689655172414, 0.98151724137931, 
0.977034482758621, 0.985931034482759, 0.991724137931035, 0.991724137931035, 
0.993310344827586, 0.995379310344828, 0.997448275862069, 0.983241379310345, 
0.985310344827586, 0.970413793103448, 0.996344827586207, 0.994206896551724, 
0.966068965517241, 0.912, 0.986689655172414, 0.970758620689655, 
0.992965517241379, 0.974275862068966, 0.994620689655172, 0.990551724137931, 
0.991241379310345, 0.975724137931035, 0.982965517241379, 0.977310344827586, 
0.989655172413793, 0.901586206896552, 0.951862068965517, 0.995034482758621, 
0.989655172413793, 0.935172413793103, 0.993655172413793, 0.911379310344828, 
0.945379310344828, 0.913931034482759, 0.916965517241379, 0.983655172413793, 
0.959586206896552, 0.948275862068966, 0.937655172413793, 0.937034482758621, 
0.980758620689655, 0.968137931034483, 0.987310344827586, 0.989655172413793, 
0.932206896551724, 0.941103448275862, 0.982344827586207, 0.988620689655172, 
0.979172413793103, 0.913310344827586, 0.945448275862069, 0.993172413793104, 
0.956413793103448, 0.976551724137931, 0.976827586206897, 0.917586206896552, 
0.991172413793104, 0.951379310344828), lig.rec.pop = c("undef_acinar", 
"mesenchymal_acinar", "endothelial_acinar", "mesenchymal_acinar", 
"mesenchymal_acinar", "blood_acinar", "alpha_acinar", "mesenchymal_acinar", 
"undef_acinar", "endocrine.progenitor_acinar", "ductal_acinar", 
"endothelial_acinar", "ductal_acinar", "undef_acinar", "mesenchymal_acinar", 
"undef_acinar", "undef_acinar", "endothelial_acinar", "blood_acinar", 
"mesenchymal_acinar", "endothelial_acinar", "acinar_acinar", 
"mesenchymal_acinar", "blood_acinar", "mesenchymal_acinar", "mesenchymal_acinar", 
"undef_acinar", "mesenchymal_acinar", "endothelial_acinar", "endothelial_acinar", 
"endothelial_acinar", "blood_acinar", "mesenchymal_acinar", "beta_acinar", 
"undef_acinar", "endothelial_acinar", "mesenchymal_acinar", "acinar_acinar", 
"ductal_acinar", "endothelial_acinar", "delta_acinar", "undef_acinar", 
"ductal_acinar", "undef_acinar", "ductal_acinar", "blood_acinar", 
"mesenchymal_acinar", "mesenchymal_acinar", "endothelial_acinar", 
"endothelial_acinar", "mesenchymal_alpha", "mesenchymal_alpha", 
"mesenchymal_alpha", "endothelial_alpha", "ductal_alpha", "acinar_alpha", 
"undef_alpha", "mesenchymal_alpha", "blood_alpha", "ductal_alpha", 
"blood_alpha", "endocrine.progenitor_alpha", "undef_alpha", "undef_alpha", 
"mesenchymal_alpha", "ductal_alpha", "endocrine.progenitor_alpha", 
"beta_alpha", "endothelial_alpha", "undef_alpha", "mesenchymal_alpha", 
"delta_alpha", "undef_alpha", "mesenchymal_alpha", "acinar_alpha", 
"undef_alpha", "endothelial_alpha", "endothelial_alpha", "ductal_alpha", 
"undef_alpha", "delta_alpha", "mesenchymal_alpha", "mesenchymal_alpha", 
"undef_alpha", "mesenchymal_alpha", "undef_alpha", "acinar_alpha", 
"endothelial_alpha", "endothelial_alpha", "undef_alpha", "mesenchymal_alpha", 
"endothelial_alpha", "mesenchymal_alpha", "mesenchymal_alpha", 
"endocrine.progenitor_alpha", "ductal_alpha", "alpha_alpha", 
"mesenchymal_alpha", "acinar_alpha", "alpha_alpha"), ligand.receptor = c("FSTL1_BMPR1A", 
"FSTL1_BMPR1A", "FSTL1_BMPR1A", "BMP4_BMPR1A", "BMP4_BMPR2", 
"IL1B_IL1R1", "VTN_ITGAV", "FN1_ITGAV", "CALR_ITGAV", "VTN_ITGAV", 
"SPP1_ITGAV", "COL4A1_ITGAV", "FN1_ITGAV", "FGB_ITGAV", "COL4A1_ITGAV", 
"FN1_ITGAV", "ANGPTL3_ITGAV", "FBN1_ITGAV", "NID1_ITGAV", "ADAM9_ITGAV", 
"NID1_ITGAV", "SPP1_ITGAV", "FBN1_ITGAV", "CALR_ITGAV", "EDIL3_ITGAV", 
"NID1_ITGAV", "VTN_ITGAV", "CALR_ITGAV", "FN1_ITGAV", "CALR_ITGAV", 
"EGFL7_NOTCH1", "EGFL7_NOTCH1", "EGFL7_NOTCH1", "EGFL7_NOTCH1", 
"EGFL7_NOTCH1", "EGFL7_NOTCH3", "FN1_SDC2", "FN1_SDC2", "LAMA3_SDC2", 
"FN1_SDC2", "FN1_SDC2", "LAMA3_SDC2", "FN1_SDC2", "FN1_SDC2", 
"VCAN_TLR2", "VCAN_TLR2", "BGN_TLR2", "VCAN_TLR2", "VCAN_TLR2", 
"BGN_TLR2", "BMP4_BMPR1A", "BMP5_BMPR1A", "FSTL1_BMPR1A", "FSTL1_BMPR1A", 
"FSTL1_BMPR1A", "FSTL1_BMPR1A", "FSTL1_BMPR1A", "BMP4_BMPR2", 
"PSAP_LRP1", "PLAT_LRP1", "THBS1_LRP1", "MDK_LRP1", "PSAP_LRP1", 
"PLAT_LRP1", "THBS1_LRP1", "MDK_LRP1", "PSAP_LRP1", "SERPINE2_LRP1", 
"CALR_LRP1", "SERPINA1_LRP1", "PSAP_LRP1", "SERPINA1_LRP1", "APOE_LRP1", 
"TFPI_LRP1", "THBS1_LRP1", "CALR_LRP1", "PLAT_LRP1", "THBS1_LRP1", 
"PSAP_LRP1", "SERPING1_LRP1", "PSAP_LRP1", "SERPING1_LRP1", "SERPINE2_LRP1", 
"MDK_LRP1", "C3_LRP1", "A2M_LRP1", "PSAP_LRP1", "LPL_LRP1", "SERPINE2_LRP1", 
"C3_LRP1", "MDK_LRP1", "SERPING1_LRP1", "APOE_LRP1", "PLAT_LRP1", 
"SERPINA1_LRP1", "SERPINA1_LRP1", "PSAP_LRP1", "PLAU_LRP1", "SERPINA1_LRP1", 
"SERPINE2_LRP1")), row.names = c(1L, 3L, 4L, 6L, 22L, 33L, 38L, 
39L, 41L, 44L, 46L, 47L, 48L, 49L, 55L, 58L, 63L, 64L, 69L, 72L, 
81L, 83L, 86L, 87L, 88L, 90L, 93L, 96L, 99L, 100L, 110L, 111L, 
114L, 115L, 117L, 118L, 129L, 130L, 136L, 138L, 141L, 143L, 146L, 
148L, 149L, 150L, 151L, 152L, 153L, 154L, 156L, 158L, 161L, 162L, 
163L, 165L, 170L, 171L, 189L, 190L, 191L, 193L, 195L, 199L, 201L, 
203L, 205L, 207L, 208L, 210L, 211L, 212L, 213L, 220L, 221L, 223L, 
224L, 225L, 227L, 228L, 230L, 233L, 234L, 238L, 239L, 240L, 243L, 
245L, 248L, 251L, 252L, 253L, 254L, 256L, 260L, 264L, 265L, 266L, 
268L, 269L), class = "data.frame")
ADD REPLY
1
Entering edit mode

Start with Heatmap(df[,cell_value_col_indices]) and then add row_annotation(df$lig.rec.pop) and then column_annotation. You might have to use left_annotation, top_annotation etc, they are row and column annotations with specific side parameters.

If clustering messes things up, draw the heatmap then get the row_order and column_order; pass those to the annotation functions by reordering the df with these order vectors.

ADD REPLY
1
Entering edit mode

Thank you very much Ram. I am going to try this now. A 3am ComplexHeatmap adventure weeee! lol

ADD REPLY
1
Entering edit mode

Hi, that looks like pheatmap, not ComplexHeatmap.

ADD REPLY
0
Entering edit mode

Oh, I see. I was thinking that too after looking at the ComplexHeatmap manual. Let me try do this in pheatmap.

I can do it with ggplot2:

ggplot(hm, aes(x = ligand.receptor, y = lig.rec.pop, fill = score)) +
  geom_tile() + theme(axis.text.x = element_text(angle = 90))

enter image description here

But I think when the time comes to add meta data and do the hierarchical clustering it might be more complicated.

ADD REPLY
4
Entering edit mode
3.5 years ago
pbpanigrahi ▴ 430

Below chunk will convert your data to complexheatmap data format. U can then modify the heatmap.

Assuming your data is in tdf data frame.

lig = unique(tdf$lig.rec.pop)
rec = unique(tdf$ligand.receptor)

mat = matrix(0,nrow = length(lig), ncol = length(rec))
rownames(mat) = lig
colnames(mat) = rec

for(i in 1:nrow(tdf))
{
  mat[tdf$lig.rec.pop[i], tdf$ligand.receptor[i]] = tdf$score[i]
}

Heatmap(mat)
ADD COMMENT
0
Entering edit mode

Thank you very much! This is exactly what I needed! Perfect! : )

ADD REPLY

Login before adding your answer.

Traffic: 1543 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6