Deleted:WGCNA significant genes
0
0
Entering edit mode
3.3 years ago
evafinegan • 0

Hi,

I am using WGCNA to construct a network and find significant genes for a trait of interest. After making the network, I chose a module based on the pvalue and correlation value. Then I calculated gene significance values for all genes in that module.

trait_x <- as.data.frame(datTraits[, "trait_x", drop = FALSE])
names(trait_x) = "trait_x"
modNames = substring(names(MEs), 3)
geneModuleMembership = as.data.frame(cor(datExpr, MEs, use = "p"));
MMPvalue = as.data.frame(corPvalueStudent(as.matrix(geneModuleMembership), nSamples));
names(geneModuleMembership) = paste("MM", modNames, sep="");
names(MMPvalue) = paste("p.MM", modNames, sep="");
geneTraitSignificance = as.data.frame(cor(datExpr, trait_x, use = "p"));
GSPvalue = as.data.frame(corPvalueStudent(as.matrix(geneTraitSignificance), nSamples));
names(geneTraitSignificance) = paste("GS.", names(trait_x), sep="");
names(GSPvalue) = paste("p.GS.", names(trait_x), sep=""); 
##Plotting the graph
module = "blue1"
column = match(module, modNames);
moduleGenes = moduleColors==module;
pdf("blue1.pdf", width = 7, height = 7);
par(mfrow = c(1,1));
verboseScatterplot(abs(geneModuleMembership[moduleGenes, column]),
                   abs(geneTraitSignificance[moduleGenes, 1]),
                   xlab = paste("Module Membership in", module, "module"),
                   ylab = "Gene significance",
                   main = paste("Module membership vs. gene significance\n"),
                   cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, col = module)     
dev.off()  


##Create the starting data frame
probes = colnames(datExpr)
geneInfo0 = data.frame(Genes = probes,
                       moduleColor = moduleColors,
                       geneTraitSignificance,
                       GSPvalue)
##Order modules by their significance for trait_x
modOrder = order(-abs(cor(MEs, trait_x, use = "p")));
##Order the genes in the geneInfo variable first by module color, then by geneTraitSignificance
geneOrder = order(geneInfo0$moduleColor, -abs(geneInfo0$GS.trait_x));
geneInfo = geneInfo0[geneOrder, ]                                            
##Save
write.csv(geneInfo, file = "geneInfo_trait_x.csv")      

#Hub genes
hub = chooseTopHubInEachModule(datExpr, moduleColors)
write.csv(hub, file = "hub_genes.csv") 

I read that a threshold of 0.2 was used in some papers to choose the significant genes. I am not sure if the threshold is for gene significance values? How can I add that step to keep only the genes above threshold value?

I am also getting an error for hub genes:

Error in hubs[m] <- colnames(adj)[hub] : replacement has length zero

I chose one module for the trait of interest. However, there were other significant modules as well. Should I choose all significant modules or the most significant module only? I have multiple traits of interest, do I need to choose significant module/s for each trait and do this calculation for gene significance for all traits separately? Is there a way to automatize this?

Thank you!

wgcna • 2.1k views
ADD COMMENT
This thread is not open. No new answers may be added
Traffic: 1958 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6