DESeq2 analysis example, opinions?
0
0
Entering edit mode
3.4 years ago
flalom • 0

Hello everyone, Purpose of the analysis: In there a difference between TOV21G-PacR and TOV21G-cont, and between the PacR and cont? My question is if this analysis makes sense for you? I am analyzing this particular gene set (GSE172016). Within the data there are two cell lines ("OVCAR3" and "TOV21G") and two conditions (Not-treated as "cont" and treated as "PacR").

# Imporing the data
library(tidyverse)
    dt <- readr::read_delim(file = "data/GSE172016_annotated.txt",
                                      col_names = T, delim = "\t") 
    dt <- dt %>% mutate(across(everything(), .fns = ~replace_na(.,0)))
conti <- as.matrix(dt[,c(2:13)])
mode(conti) <- "integer"
row.names(conti) <- dt$gene_id

Now I build the metadata table:

# building metadata 
metadata <- colnames(conti)
metadata <- data.frame(names = metadata,
                       cell_line = factor(sapply(strsplit(metadata, "-"), "[", 1)),
                       treatment = factor(substring(metadata, 8, last = 11)),
                       replica = factor(sapply(strsplit(metadata, "_"), "[", 2))
                       )
rownames(metadata) <- metadata$names
metadata$names <- NULL
                          cell_line treatment    replica
OVCAR3-control_replicate2    OVCAR3      cont replicate2
OVCAR3-control_replicate3    OVCAR3      cont replicate3
OVCAR3-control_replicate1    OVCAR3      cont replicate1
OVCAR3-PacR_replicate1       OVCAR3      PacR replicate1
OVCAR3-PacR_replicate2       OVCAR3      PacR replicate2
OVCAR3-PacR_replicate3       OVCAR3      PacR replicate3
TOV21G-control_replicate1    TOV21G      cont replicate1
TOV21G-control_replicate2    TOV21G      cont replicate2
TOV21G-control_replicate3    TOV21G      cont replicate3
TOV21G-PacR_replicate1       TOV21G      PacR replicate1
TOV21G-PacR_replicate2       TOV21G      PacR replicate2
TOV21G-PacR_replicate3       TOV21G      PacR replicate3

Adding the deseq object: Does the design below make sense in answering the following question: is there an effect of the condition used, the cell line used and additional effect from possible interactions between the cell_line and the condition that could influence the gene expression?

deseq <- DESeqDataSetFromMatrix(countData = conti, 
                                colData = metadata,
                                design = ~1
                                )
design(deseq) <- ~1 + cell_line + treatment + cell_line : treatment
deseq <- DESeq(deseq)
colData(deseq)
resultsNames(deseq)
mod_mat <- model.matrix(design(deseq), colData(deseq))

This is the mod_mat:

                          (Intercept) cell_lineTOV21G treatmentPacR cell_lineTOV21G:treatmentPacR
OVCAR3-control_replicate2           1               0             0                             0
OVCAR3-control_replicate3           1               0             0                             0
OVCAR3-control_replicate1           1               0             0                             0
OVCAR3-PacR_replicate1              1               0             1                             0
OVCAR3-PacR_replicate2              1               0             1                             0
OVCAR3-PacR_replicate3              1               0             1                             0
TOV21G-control_replicate1           1               1             0                             0
TOV21G-control_replicate2           1               1             0                             0
TOV21G-control_replicate3           1               1             0                             0
TOV21G-PacR_replicate1              1               1             1                             1
TOV21G-PacR_replicate2              1               1             1                             1
TOV21G-PacR_replicate3              1               1             1                             1
attr(,"assign")
[1] 0 1 2 3
attr(,"contrasts")
attr(,"contrasts")$cell_line
[1] "contr.treatment"


attr(,"contrasts")$treatment [1] "contr.treatment"

Then I "personalize" my contrasts

OVCAR3_control <- colMeans(mod_mat[deseq$cell_line == "OVCAR3" & deseq$treatment == "cont", ])
OVCAR3_test <- colMeans(mod_mat[deseq$cell_line == "OVCAR3" & deseq$treatment == "PacR", ])
TOV21G_control <- colMeans(mod_mat[deseq$cell_line == "TOV21G" & deseq$treatment == "cont", ])
TOV21G_test <- colMeans(mod_mat[deseq$cell_line == "TOV21G" & deseq$treatment == "PacR", ])

Finally I get the results:

res1 <- results(deseq, 
                contrast = OVCAR3_test - OVCAR3_control,
                alpha = 0.05, 
                pAdjustMethod = "BH")
res2 <- results(deseq, 
                contrast = TOV21G_test - TOV21G_control,
                alpha = 0.05, 
                pAdjustMethod = "BH")
res3 <- results(deseq, 
                contrast = (OVCAR3_control - TOV21G_control) - (TOV21G_control - TOV21G_test),
                alpha = 0.05, 
                pAdjustMethod = "BH")

I would be grateful if anyone could help me understand well the contrast part, whether it makes sense or if you would do it differently. Moreover, what would you add to this analysis? Would you add any confirmation(s) that the data makes sense?

DESeq2 contrasts matrix_design • 657 views
ADD COMMENT

Login before adding your answer.

Traffic: 1805 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6