Is there a relationship between the p-values obtained in a GWAS and the standard error of the effect size of a SNP that can that can be explained either explicitly or intuitively? Methods for prediction based on effect sizes, such as PRSice, don't incorporate the standard error into the prediction model; is this because it is too complicated to do algorithmically or is it too difficult to define a "bad" standard error to prune out?
Are we in any way filtering for "good" SEs by filtering by P-value during PRS; is there a relationship between SE and P-value such that we might expect our top SNPs to have SEs that are not very large relative to its effect size?
Hey Sam, do you by any chance have a reference for this relationship?
You mean z-score vs p-value? I am not sure if there is a specific citation for that though you should be able to find that in most statistical text (or google p-value from z-score)