calculate the variance across the samples
0
0
Entering edit mode
2.7 years ago

Hello everyone

I am working on spatial transcriptome 10X visum. In order to check the variance across biological replicates, I used followed steps :

1) Read data1 and remove the mitochondrial percentage in object meta data

library(Seurat)
library(SeuratData)
library(ggplot2)
library(patchwork)
library(dplyr)

data.dir <- "/home/outs"

data1 <- Load10X_Spatial(
  data.dir,
  filename = "filtered_feature_bc_matrix.h5",
  assay = "Spatial",
  slice = "C1",
  filter.matrix = TRUE,
  to.upper = FALSE,
  image = NULL,

)

# store mitochondrial percentage in object meta data
ss <- PercentageFeatureSet(data1, pattern = "^MT-", col.name = "percent.mt")



 ss = ss[, ss$nFeature_Spatial > 200 & ss$percent.mt < 25]

ss <- SCTransform(ss, assay = "Spatial", verbose = FALSE)

ss <- RunPCA(ss, assay = "SCT", verbose = FALSE)


as_tibble(HVFInfo(ss),rownames = "Gene") -> variance.data

2) extract the variance in data1 

variance.data %>%  mutate(hypervariable=Gene %in% VariableFeatures(ss)) -> variance.data


############################### data2 ################################# 

3) Read data2 and remove the mitochondrial percentage in object meta data 


library(Seurat)
library(SeuratData)
library(ggplot2)
library(patchwork)
library(dplyr)

data.dir2 <- "/home/outs2"

data2 <- Load10X_Spatial(
  data.dir2,
  filename = "filtered_feature_bc_matrix.h5",
  assay = "Spatial",
  slice = "D1",
  filter.matrix = TRUE,
  to.upper = FALSE,
  image = NULL,

)


# store mitochondrial percentage in object meta data
ss2 <- PercentageFeatureSet(data2, pattern = "^MT-", col.name = "percent.mt")



 ss2 = ss2[, ss$nFeature_Spatial > 200 & ss$percent.mt < 25]

ss2 <- SCTransform(ss2, assay = "Spatial", verbose = FALSE)

ss2 <- RunPCA(ss2, assay = "SCT", verbose = FALSE)


4) extract the variance in data2


as_tibble(HVFInfo(ss2),rownames = "Gene") -> variance.data2

variance.data2 %>%  mutate(hypervariable=Gene %in% VariableFeatures(ss2)) -> variance.data2



############# plot ############################################# 

5) visualization of the variance in each seurat object 

variance.data2$group <- rep("D1", nrow(variance.data2))


variance.data$group <- rep("C1", nrow(variance.data))


 dataf <- rbind(variance.data , variance.data2)

    enter code here

dataf$group <- as.factor(dataf$group)

p <- ggplot(dataf, aes(x=group, y=residual_variance, color=group, shape=group)) + 
  geom_jitter(position=position_jitter(0.2))+
  labs(title="Plot of residual_varianc by group",x="group", y = "residual_variance")
p+scale_color_brewer(palette="Dark2")

I would like to be sure for the steps that I have followed for the comparison of variance across the samples. I would appreciate all the suggestions.

10X spatial cell single visium • 503 views
ADD COMMENT

Login before adding your answer.

Traffic: 1809 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6