sva batch correction error
0
0
Entering edit mode
2.5 years ago
Chironex ▴ 50

Hi everyone, I state that II'm new with this kind of analysis. I created a normalized count matrix of RNA-seq data using the upper quartile method. Well, what interests me is to remove the batch effects observed with the PCA. I want to use sva tool, and after reading the tutoriial vignette, I created my data, but when i apply sva(), i am sent back the following error:

svobj = svaseq(edata,mod,mod0,n.sv=n.sv)

Number of significant surrogate variables is:  6 
Iteration (out of 5 ):Error in density.default(x, adjust = adj) : 'x' contains missing values

I don't understand well what could be my error, because I followed some posts about this but I didn't find a good resolution. Here I post my data:

head(assayData)

                          t1          t2          t3          t4            D_1          D_2          D_3          D_4
Xkr4           1.364613e+00 0.000000e+00 0.000000e+00 0.000000e+00 8.763967e-01 2.963667e-01 1.448452e+00 0.000000e+00
Gm37363        5.817520e-01 3.732263e-01 4.301386e-01 0.000000e+00 0.000000e+00 1.181264e+00 0.000000e+00 2.675606e+00
Gm38148        0.000000e+00 0.000000e+00 8.572272e-01 0.000000e+00 0.000000e+00 2.350076e-01 1.122903e+00 0.000000e+00
Gm19938        4.379318e+00 1.362470e+00 0.000000e+00 0.000000e+00 9.080535e-01 2.656521e+00 2.350880e+00 5.885607e-01
Rp1            0.000000e+00 7.250770e-01 0.000000e+00 1.028768e+00 0.000000e+00 2.527275e-01 1.951990e-01 0.000000e+00
Sox17          3.902733e+01 3.198295e+01 2.494253e+01 1.855771e+01 4.680339e+01 2.997644e+01 3.296480e+01 3.805357e+01


phenoData <- data.frame(row.names = c("t1", "t2", "t3", "t4", "4D_1", "4D_2", "4D_3", "4D_4"), 

                       condition = c("control","control","control","control", "case","case","case","case"))

metadata <- data.frame(labelDescription = "condition", 
                       row.names = "condition" ) 
pData <- AnnotatedDataFrame(data=phenoData, varMetadata = metadata)
ExpressionSet <-  ExpressionSet(assayData, phenoData=pData)

pheno = pData(ExpressionSet)
edata = exprs(ExpressionSet)
mod = model.matrix(~as.factor(condition), data=pheno)
mod0 = model.matrix(~1, data=pheno)

n.sv = num.sv(edata,mod,method="leek")
svobj = sva(edata,mod,mod0,n.sv=n.sv)

I converted my variable as factor and i don't need any covariiates. I also tried with svaseq but the error message is the same. I will appreciate your help. thank you

sva r rna-seq • 454 views
ADD COMMENT

Login before adding your answer.

Traffic: 1770 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6