Dear sir,
I, Kamalakkannan R, am from the central university of Kerala. I am currently analysing the ovarian Transcriptomic data. But I haven't replicates for this data. Without this, I am facing a lot of problems. In this case, I am looking for your help. It will be helpful for my PhD work.
Using this code, I am getting 23k total expressions, 17k upregulated and 0 down-regulated. I don’t know why I am getting 0 downregulated genes. Please, sir, help me to complete part.
Thanks
Sincerely
KAMALAKKANNAN R
#data from featureCount
countdata <- read.table("counts.txt",header = TRUE, skip = 1, row.names = 1)
head(countdata)
colnames(countdata) <- gsub(".bam", "", colnames(countdata), fixed = T)
colnames(countdata) <- gsub(".bam", "", colnames(countdata), fixed = T)
colnames(countdata) <- gsub("..", "", colnames(countdata), fixed = T)
countdata <- countdata[ ,c(-1:-5)]
head(countdata)
# sample names
colData<-data.frame(condition=c("A","B"))
row.names(colData)<-c("A","B")
colData
library(DESeq2)
# generate the DESeqDataSet
ddsMat <- DESeqDataSetFromMatrix(countData = countdata,
colData = colData,
design = ~1)
# remove genes without any counts
DESeq.ds <- ddsMat[ rowSums(counts(ddsMat)) > 0, ]
colSums(counts(DESeq.ds))
ddsMat
# calculate the size factor and add it to the data set
DESeq.ds1 <- estimateSizeFactors(DESeq.ds)
sizeFactors(DESeq.ds1)
colData(DESeq.ds1)
counts.sf_normalized <- counts(DESeq.ds1, normalized = TRUE)
dds <- DESeq(DESeq.ds1)
DGE.results <- results(dds, independentFiltering = TRUE , alpha = 0.05)
summary(DGE.results)
write.csv(res2,"res2.csv")
What is the structure of your data? Can you add a table with a list of the samples you have and their relevant metadata?