enrichGO results
1
0
Entering edit mode
2.4 years ago
Shakiba ▴ 20

Hello, I want to access the enriched pathways through the enrichGO function. I thought that I need to use ego@result to get the enriched pathways and it gives me a lot of IDs and pathways. But after searching I realized enriched pathways can be shown easily just by head(ego). First, I want to know what does ego@result show? Second, is there any way to know the scores of the enriched pathway? Third, are the enriched pathways ordered by their enrichment score? Thanks.

ego <- enrichGO(gene = sigOE_genes, universe = allOE_genes, keyType = "ENSEMBL", OrgDb = org.Mm.eg.db, ont = ont_type, pAdjustMethod = "BH", qvalueCutoff = 0.05, readable = TRUE)

sessionInfo() R version 4.2.0 (2022-04-22 ucrt) Platform: x86_64-w64-mingw32/x64 (64-bit) Running under: Windows 10 x64 (build 19044)

Matrix products: default

locale: [1] LC_COLLATE=English_United States.utf8 LC_CTYPE=English_United States.utf8 LC_MONETARY=English_United States.utf8 [4] LC_NUMERIC=C LC_TIME=English_United States.utf8

attached base packages: [1] grid stats4 stats graphics grDevices utils datasets methods base

other attached packages: [1] Rgraphviz_2.41.1 topGO_2.49.0 SparseM_1.81 GO.db_3.15.0 graph_1.75.0
[6] GOSemSim_2.23.0 enrichplot_1.17.0 ggnewscale_0.4.7 forcats_0.5.1 stringr_1.4.0
[11] dplyr_1.0.9 purrr_0.3.4 readr_2.1.2 tidyr_1.2.0 tibble_3.1.7
[16] ggplot2_3.3.6 tidyverse_1.3.1 ensembldb_2.21.2 AnnotationFilter_1.21.0 GenomicFeatures_1.49.5 [21] GenomicRanges_1.49.0 GenomeInfoDb_1.33.3 AnnotationHub_3.5.0 BiocFileCache_2.5.0 dbplyr_2.2.1
[26] clusterProfiler_4.5.1 pathviewr_1.0.1 DOSE_3.23.2 org.Mm.eg.db_3.15.0 AnnotationDbi_1.59.1
[31] IRanges_2.31.0 S4Vectors_0.35.1 Biobase_2.57.1 BiocGenerics_0.43.0

loaded via a namespace (and not attached): [1] utf8_1.2.2 tidyselect_1.1.2 RSQLite_2.2.14 BiocParallel_1.31.9
[5] scatterpie_0.1.7 munsell_0.5.0 codetools_0.2-18 withr_2.5.0
[9] colorspace_2.0-3 filelock_1.0.2 rstudioapi_0.13 labeling_0.4.2
[13] MatrixGenerics_1.9.1 GenomeInfoDbData_1.2.8 polyclip_1.10-0 bit64_4.0.5
[17] farver_2.1.0 downloader_0.4 vctrs_0.4.1 treeio_1.21.0
[21] generics_0.1.3 gson_0.0.6 R6_2.5.1 graphlayouts_0.8.0
[25] locfit_1.5-9.5 bitops_1.0-7 cachem_1.0.6 fgsea_1.23.0
[29] gridGraphics_0.5-1 DelayedArray_0.23.0 assertthat_0.2.1 promises_1.2.0.1
[33] BiocIO_1.7.1 scales_1.2.0 ggraph_2.0.5 gtable_0.3.0
[37] tidygraph_1.2.1 rlang_1.0.3 genefilter_1.79.0 splines_4.2.0
[41] rtracklayer_1.57.0 lazyeval_0.2.2 broom_1.0.0 BiocManager_1.30.18
[45] yaml_2.3.5 reshape2_1.4.4 modelr_0.1.8 backports_1.4.1
[49] httpuv_1.6.5 qvalue_2.29.0 tools_4.2.0 ggplotify_0.1.0
[53] ellipsis_0.3.2 RColorBrewer_1.1-3 Rcpp_1.0.8.3 plyr_1.8.7
[57] progress_1.2.2 zlibbioc_1.43.0 RCurl_1.98-1.7 prettyunits_1.1.1
[61] viridis_0.6.2 cowplot_1.1.1 SummarizedExperiment_1.27.1 haven_2.5.0
[65] ggrepel_0.9.1 fs_1.5.2 magrittr_2.0.3 data.table_1.14.2
[69] DO.db_2.9 reprex_2.0.1 ProtGenerics_1.29.0 matrixStats_0.62.0
[73] hms_1.1.1 patchwork_1.1.1 mime_0.12 xtable_1.8-4
[77] XML_3.99-0.10 readxl_1.4.0 gridExtra_2.3 compiler_4.2.0
[81] biomaRt_2.53.2 crayon_1.5.1 shadowtext_0.1.2 htmltools_0.5.2
[85] ggfun_0.0.6 later_1.3.0 tzdb_0.3.0 geneplotter_1.75.0
[89] aplot_0.1.6 lubridate_1.8.0 DBI_1.1.3 tweenr_1.0.2
[93] MASS_7.3-57 rappdirs_0.3.3 Matrix_1.4-1 cli_3.3.0
[97] parallel_4.2.0 igraph_1.3.2 pkgconfig_2.0.3 GenomicAlignments_1.33.0
[101] xml2_1.3.3 ggtree_3.5.1 annotate_1.75.0 XVector_0.37.0
[105] rvest_1.0.2 yulab.utils_0.0.5 digest_0.6.29 Biostrings_2.65.1
[109] cellranger_1.1.0 fastmatch_1.1-3 tidytree_0.3.9 restfulr_0.0.15
[113] curl_4.3.2 shiny_1.7.1 Rsamtools_2.13.3 rjson_0.2.21
[117] lifecycle_1.0.1 nlme_3.1-158 jsonlite_1.8.0 viridisLite_0.4.0
[121] fansi_1.0.3 pillar_1.7.0 lattice_0.20-45 KEGGREST_1.37.2
[125] fastmap_1.1.0 httr_1.4.3 survival_3.3-1 interactiveDisplayBase_1.35.0 [129] glue_1.6.2 png_0.1-7 BiocVersion_3.16.0 bit_4.0.4
[133] ggforce_0.3.3 stringi_1.7.6 blob_1.2.3 DESeq2_1.37.4
[137] memoise_2.0.1 ape_5.6-2

clusterProfiler enrichGO • 658 views
ADD COMMENT
1
Entering edit mode
2.4 years ago
Shakiba ▴ 20

Hello, I found out the result shows the enrichment analysis and when getting head of it, it shows that the arguments you put in the enrichGO function didn't meet the conditions. For example, I put the qvalueCutoff = 0.05 and my result shows that some of the pathways' q-value are more than 0.05. So, it won`t show these pathways in the head(ego). Thanks.

ADD COMMENT

Login before adding your answer.

Traffic: 2123 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6