Need HVGs from concatenated spatial seq data to integrate CODEX with scRNAseq
1
0
Entering edit mode
2.3 years ago
Arta • 0

Hi, all.

I need to integrate CODEX data with 5' and 3' sequenced scRNA-seq data. The scRNA-seq datasets have already been integrated with each other.

I want to use a tool named GLUER. However, this tool requires a key called vst_variance_standardized:

    common_feature = np.intersect1d(ref_obj.var.sort_values(by=['vst_variance_standardized'],
                                                            ascending=False).index.values[:n_features],
                                    query_obj.var.sort_values(by=['vst_variance_standardized'],
                                                              ascending=False).index.values[:n_features])

    common_feature_selected = np.intersect1d(ref_obj.var.sort_values(by=['vst_variance_standardized'],
                                                                     ascending=False).index.values[:filter_n_features[0]],
                                             query_obj.var.sort_values(by=['vst_variance_standardized'],
                                                                       ascending=False).index.values[:filter_n_features[1]])

I can generate these variable genes using scanpy's sc.pp.highly_variable_genes(), but when I try to do this with the concatenated CODEX data, I get the following error:

>>> sc.pp.highly_variable_genes(adata=adata_concat, n_top_genes=5, flavor="seurat_v3", inplace=True, batch_key='csv_sample')
/home/seyediana/miniconda3/envs/GLUER/lib/python3.8/site-packages/scanpy/preprocessing/_highly_variable_genes.py:62: UserWarning: `flavor='seurat_v3'` expects raw count data, but non-integers were found.
  warnings.warn(
/home/seyediana/miniconda3/envs/GLUER/lib/python3.8/site-packages/scanpy/preprocessing/_highly_variable_genes.py:83: RuntimeWarning: invalid value encountered in log10
  x = np.log10(mean[not_const])
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/seyediana/miniconda3/envs/GLUER/lib/python3.8/site-packages/scanpy/preprocessing/_highly_variable_genes.py", line 422, in highly_variable_genes
    return _highly_variable_genes_seurat_v3(
  File "/home/seyediana/miniconda3/envs/GLUER/lib/python3.8/site-packages/scanpy/preprocessing/_highly_variable_genes.py", line 85, in _highly_variable_genes_seurat_v3
    model.fit()
  File "_loess.pyx", line 899, in _loess.loess.fit
ValueError: b'Extrapolation not allowed with blending'

I get an identical error with the scRNA-seq data.

One line that stands out to me .../_highly_variable_genes.py:62: UserWarning:flavor='seurat_v3'expects raw count data, but non-integers were found.

This is because, for both of the datasets, adata.X contains normalized counts. There exists a adata.raw for both objects, but I have no idea how to use it. All of my attempts to use it have failed.

Do you have any suggestions?

scRNA cell spatial CODEX single seurat • 1.6k views
ADD COMMENT
1
Entering edit mode
2.3 years ago
Arta • 0

Figured it out, I have to extract the sparse matrix like so:

adata_concat.layers['raw'] = pd.DataFrame.sparse.from_spmatrix(adata_concat.raw.X)

adata_concat.layers['raw'].columns = adata_concat.var.index
adata_concat.layers['raw'].index = adata_concat.obs.index

sc.pp.highly_variable_genes(adata=adata_concat, n_top_genes=5, layer = 'raw', flavor="seurat_v3", inplace=True, batch_key='csv_sample')
ADD COMMENT

Login before adding your answer.

Traffic: 1594 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6