DBSCAN clustering in GUI or online software
1
0
Entering edit mode
5.8 years ago
rob.costa1234 ▴ 310

Is there any web based or GUI based tool that has Density-based spatial clustering (DBSCAN) r package option for clustering. It has to be recommended to a non bioinformatic colleague to explore. Thanks

GUI version Web based • 2.8k views
ADD COMMENT
0
Entering edit mode
5.8 years ago

Why not use a Shiny app? You can use the code below as starting point.

library(shiny)
library(dbscan)
library(ggplot2)
library(shinycssloaders) # Loading/busy animations
ui <- fluidPage(
  titlePanel("Input", windowTitle = "DBSCAN"),
  ## Sidebar with input and output definitions
  sidebarLayout(
    position = c("left", "right"),
    fluid = TRUE,
    ## Sidebar panel for inputs
    sidebarPanel(
      width = 3,
      h4("Data file"),
      ## Input: Select a csv file
      fileInput("datafile", "Select data file (in csv format)",
                multiple = FALSE,
                accept = c("text/csv",
                           "text/comma-separated-values,text/plain",
                           ".csv")),
      ## Checkbox if file has header
      checkboxInput("header", "File has header", TRUE),
      ## Select separator
      radioButtons("sep", "Separator",
                   choices = c(Comma = ",",
                               Semicolon = ";",
                               Tab = "\t"),
                   selected = "\t"),
      ## Select quotes
      radioButtons("quote", "Quote",
                   choices = c(None = "",
                               "Double Quote" = '"',
                               "Single Quote" = "'"),
                   selected = '"'),
      tags$hr(style="border-top: 1px solid #000000;"),        
      h4("Plot"),
      ## Select variables to display
      uiOutput("plotVariables"),
      tags$hr(style="border-top: 1px solid #000000;"),
      h4("DBSCAN"),
      ## Select variables to use for clustering
      uiOutput("clusterVariables"),
      ## DBSCAN input parameters
      numericInput('eps', 'Size of the epsilon neighbourhood (eps)', NULL),
      numericInput('minPts', 'Number of minimum points in the eps region (minPts)', 5, min = 1),
      actionButton("clusterButton", "Cluster away!")      
    ),
    mainPanel(
      width = 9,
      fluidRow( 
        column(9,
               fluidRow(
                 h3('Plot'),
                 withSpinner(
                   plotOutput('plot', height = 600, width = '100%')
                 )
               )
        )
      )
    )    
  )
)
server <- function(input, output, session) {
  rv <- reactiveValues(data = NULL, clusters = NULL) 
  ## Read uploaded data file
  observeEvent(input$datafile, {   
    if (is.null(input$datafile)) return(NULL)
    req(input$datafile) ## Proceed only if file selected     
    rv$data <- read.csv(input$datafile$datapath,
                            header = input$header,
                            sep = input$sep,
                            quote = input$quote,
                            stringsAsFactors = FALSE)    
      ## Remove non-numeric columns to be safe for clustering
      rv$data <- rv$data[,sapply(rv$data, is.numeric)]
  })
  ## Dynamically generate UI input to select variables once data is uploaded and read
  ## Do once to select variables to plot and once to select variables to use for clustering
  output$plotVariables <- renderUI({
    selectizeInput(inputId = "plotVar", 
                   label = "Variables to plot",
                   multiple = TRUE,
                   choices = names(rv$data),
                   options = list(maxItems = 2))
  })
  output$clusterVariables <- renderUI({
    selectizeInput(inputId = "clusterVar", 
                   label = "Variables to use for clustering",
                   multiple = TRUE,
                   choices = names(rv$data))
  })
  ## Do clustering once button is pressed
  observeEvent(input$clusterButton, {
    if(!is.na(input$eps && length(input$clusterVar)>0)) {
     dbr <- dbscan(as.matrix(rv$data[, input$clusterVar]), input$eps, input$minPts)
     rv$clusters <- dbr$cluster
    }
  }) 
  ## Plot
  output$plot <- renderPlot({
    selectedCols <- input$plotVar
    if (length(selectedCols) == 2) {
      p <- ggplot(data = rv$data, aes_string(x = selectedCols[1], y = selectedCols[2])) +
        labs(x = eval(selectedCols[1]), y = eval(selectedCols[2]))
      if(!is.null(rv$clusters)) { # We have clusters
        p <- p +  geom_point(aes(colour = factor(rv$clusters))) +
        scale_colour_brewer('Clusters', palette = 'Set1')
      } else { # No clustering
        p <- p + geom_point(color = 'darkblue')
      }
      p <- p + coord_cartesian(expand = TRUE)
      plot(p)
    }
  })
}
## Run the application
shinyApp(ui = ui, server = server)
ADD COMMENT
0
Entering edit mode

What is the sample data to run this GUI? should there be a rule? I managed to run tis GUI but when entering data can't run it. Thank you very much.

ADD REPLY

Login before adding your answer.

Traffic: 1942 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6