drug sensitivity prediction
1
0
Entering edit mode
2.1 years ago
luffy ▴ 130

Dear all,

I have been working on OncoPredict. I was able to reproduce results of calcPhenotype() using the example data. But i am bit confused with the input data. What are column and rows in each datasets used

trainingExprData, trainingPtype and testExprData enter image description here

I have data downloaded from GDSC and i have my expresssion data (DEGs) obtained from DESeq2. How do i prepare the input data for calcPhenotype()

Thank you for your time

Any help would be appreciated

deseq2 oncopredict R drug • 972 views
ADD COMMENT
5
Entering edit mode
17 months ago
DareDevil ★ 4.3k

Once you download GDSC data you will have file named: DataFiles.zip.

  1. Extract the zip file
  2. Convert DESeq2 expression data to log scale (if they are not): your_data_log_transformed.txt

then,

library(oncoPredict)
setwd("DataFiles/")

#Read GDSC2 response data. rownames() are samples, colnames() are drugs. 
trainingPtype = readRDS(file = "Training Data/GDSC2_Res.rds")
trainingPtype<-exp(trainingPtype)

#GDSC2 expression data for the vignette (it's a much smaller sampling)
trainingExprData=readRDS(file='Training Data/GDSC2_Expr (RMA Normalized and Log Transformed).rds')

#Read testing data as a matrix with rownames() as genes and colnames() as samples.
testExprData=as.matrix(read.table('your_data_log_transformed.txt`', header=TRUE, row.names=1))

#Additional parameters. 
batchCorrect<-"eb"
powerTransformPhenotype<-TRUE
removeLowVaryingGenes<-0.2
removeLowVaringGenesFrom<-"homogenizeData"
minNumSamples=10
selection<- 1
printOutput=TRUE
pcr=FALSE
report_pc=FALSE
cc=FALSE
rsq=FALSE
percent=80

#Run the calcPhenotype() function using the parameters you specified above.
calcPhenotype(trainingExprData=trainingExprData,
              trainingPtype=trainingPtype,
              testExprData=testExprData,
              batchCorrect=batchCorrect,
              powerTransformPhenotype=powerTransformPhenotype,
              removeLowVaryingGenes=removeLowVaryingGenes,
              minNumSamples=minNumSamples,
              selection=selection,
              printOutput=printOutput,
              pcr=pcr,
              removeLowVaringGenesFrom=removeLowVaringGenesFrom,
              report_pc=report_pc,
              cc=cc,
              percent=percent,
              rsq=rsq)

All these steps are documented well in calcPhenotype

ADD COMMENT

Login before adding your answer.

Traffic: 2063 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6