From Seurat object to a dataframe
0
0
Entering edit mode
2.1 years ago

I am doing single-cell RNA analysis and I have Seurat files, but now I would like to transform them into dataframes and I cannot find anything that works. This are all the command that I try to perform. Do you have any idea?

data <- CreateSeuratObject(counts = data, project = "scRNA", min.cells = 3, min.features = 200) 
...
G2M_cell <- ScaleData(G2M_cell)
dataf <- as.data.frame(G2M_cell)

Error in as.data.frame.default(G2M_cell) : 
  coercizione di classe ‘structure("Seurat", package = "SeuratObject")’ in data.frame non possibile
a <- as.data.frame(G2M_cell, genes = Seurat::VariableFeatures(G2M_cell),fix_names = TRUE)
Error in as.data.frame.default(G2M_cell, genes = Seurat::VariableFeatures(G2M_cell),  : 
  coercizione di classe ‘structure("Seurat", package = "SeuratObject")’ in data.frame non possibile
S4_to_dataframe <- function(s4obj) {
  nms <- slotNames(s4obj)

  lst <- lapply(nms, function(nm) slot(s4obj, nm))
  as.data.frame(setNames(lst, nms))
}

S4_to_dataframe(G2M_cell)

Error in as.data.frame.default(x[[i]], optional = TRUE) : 
  coercizione di classe ‘structure("Assay", package = "SeuratObject")’ in data.frame non possibile
> sessionInfo()
R version 4.1.3 (2022-03-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 22000)

Matrix products: default

locale:
[1] LC_COLLATE=Italian_Italy.1252  LC_CTYPE=Italian_Italy.1252   
[3] LC_MONETARY=Italian_Italy.1252 LC_NUMERIC=C                  
[5] LC_TIME=Italian_Italy.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] reticulate_1.26    magrittr_2.0.3     forcats_0.5.2      stringr_1.4.1     
 [5] purrr_0.3.4        readr_2.1.3        tidyr_1.2.1        tibble_3.1.8      
 [9] tidyverse_1.3.2    ggplot2_3.3.6      RaceID_0.2.7       sp_1.5-0          
[13] SeuratObject_4.1.2 Seurat_4.2.0       dplyr_1.0.10       R.utils_2.12.1    
[17] R.oo_1.25.0        R.methodsS3_1.8.2 

loaded via a namespace (and not attached):
  [1] rappdirs_0.3.3                          rtracklayer_1.54.0                     
  [3] scattermore_0.8                         princurve_2.1.6                        
  [5] knitr_1.40                              bit64_4.0.5                            
  [7] irlba_2.3.5.1                           DelayedArray_0.20.0                    
  [9] data.table_1.14.2                       rpart_4.1.16                           
 [11] KEGGREST_1.34.0                         RCurl_1.98-1.8                         
 [13] generics_0.1.3                          BiocGenerics_0.40.0                    
 [15] GenomicFeatures_1.46.5                  cowplot_1.1.1                          
 [17] RSQLite_2.2.17                          shadowtext_0.1.2                       
 [19] RANN_2.6.1                              future_1.29.0                          
 [21] tzdb_0.3.0                              bit_4.0.4                              
 [23] enrichplot_1.14.2                       lubridate_1.8.0                        
 [25] spatstat.data_3.0-0                     xml2_1.3.3                             
 [27] httpuv_1.6.6                            SummarizedExperiment_1.24.0            
 [29] assertthat_0.2.1                        gargle_1.2.1                           
 [31] viridis_0.6.2                           xfun_0.34                              
 [33] hms_1.1.2                               evaluate_0.18                          
 [35] promises_1.2.0.1                        fansi_1.0.3                            
 [37] restfulr_0.0.15                         progress_1.2.2                         
 [39] readxl_1.4.1                            caTools_1.18.2                         
 [41] dbplyr_2.2.1                            igraph_1.3.4                           
 [43] DBI_1.1.3                               htmlwidgets_1.5.4                      
 [45] spatstat.geom_3.0-3                     googledrive_2.0.0                      
 [47] stats4_4.1.3                            ellipsis_0.3.2                         
 [49] RSpectra_0.16-1                         backports_1.4.1                        
 [51] permute_0.9-7                           biomaRt_2.50.3                         
 [53] deldir_1.0-6                            MatrixGenerics_1.6.0                   
 [55] SingleCellExperiment_1.16.0             vctrs_0.4.1                            
 [57] Biobase_2.54.0                          ROCR_1.0-11                            
 [59] abind_1.4-5                             cachem_1.0.6                           
 [61] withr_2.5.0                             ggforce_0.3.4                          
 [63] progressr_0.11.0                        sctransform_0.3.5                      
 [65] vegan_2.6-4                             GenomicAlignments_1.30.0               
 [67] FateID_0.2.2                            treeio_1.18.1                          
 [69] prettyunits_1.1.1                       goftest_1.2-3                          
 [71] cluster_2.1.2                           DOSE_3.20.1                            
 [73] ape_5.6-2                               lazyeval_0.2.2                         
 [75] crayon_1.5.2                            labeling_0.4.2                         
 [77] runner_0.4.2                            pkgconfig_2.0.3                        
 [79] tweenr_2.0.2                            GenomeInfoDb_1.30.1                    
 [81] nlme_3.1-155                            rlang_1.0.6                            
 [83] globals_0.16.1                          lifecycle_1.0.3                        
 [85] miniUI_0.1.1.1                          downloader_0.4                         
 [87] filelock_1.0.2                          BiocFileCache_2.2.1                    
 [89] modelr_0.1.9                            cellranger_1.1.0                       
 [91] randomForest_4.7-1.1                    polyclip_1.10-0                        
 [93] matrixStats_0.62.0                      lmtest_0.9-40                          
 [95] som_0.3-5.1                             Matrix_1.5-1                           
 [97] aplot_0.1.8                             boot_1.3-28                            
 [99] zoo_1.8-11                              reprex_2.0.2                           
[101] googlesheets4_1.0.1                     ggridges_0.5.4                         
[103] pheatmap_1.0.12                         png_0.1-7                              
[105] viridisLite_0.4.1                       rjson_0.2.21                           
[107] bitops_1.0-7                            KernSmooth_2.23-20                     
[109] Biostrings_2.62.0                       blob_1.2.3                             
[111] qvalue_2.26.0                           parallelly_1.32.1                      
[113] spatstat.random_3.0-1                   gridGraphics_0.5-1                     
[115] S4Vectors_0.32.4                        scales_1.2.1                           
[117] memoise_2.0.1                           plyr_1.8.7                             
[119] ica_1.0-3                               gplots_3.1.3                           
[121] zlibbioc_1.40.0                         compiler_4.1.3                         
[123] scatterpie_0.1.8                        BiocIO_1.4.0                           
[125] RColorBrewer_1.1-3                      plotrix_3.8-2                          
[127] fitdistrplus_1.1-8                      Rsamtools_2.10.0                       
[129] cli_3.3.0                               XVector_0.34.0                         
[131] listenv_0.8.0                           patchwork_1.1.2                        
[133] pbapply_1.5-0                           MASS_7.3-55                            
[135] mgcv_1.8-39                             tidyselect_1.2.0                       
[137] stringi_1.7.6                           yaml_2.3.5                             
[139] GOSemSim_2.20.0                         askpass_1.1                            
[141] locfit_1.5-9.6                          ggrepel_0.9.1                          
[143] grid_4.1.3                              fastmatch_1.1-3                        
[145] tools_4.1.3                             future.apply_1.10.0                    
[147] parallel_4.1.3                          rstudioapi_0.14                        
[149] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2 gridExtra_2.3                          
[151] farver_2.1.1                            Rtsne_0.16                             
[153] ggraph_2.0.6                            BiocManager_1.30.19                    
[155] digest_0.6.29                           rgeos_0.5-9                            
[157] FNN_1.1.3.1                             shiny_1.7.3                            
[159] quadprog_1.5-8                          Rcpp_1.0.9                             
[161] broom_1.0.1                             GenomicRanges_1.46.1                   
[163] later_1.3.0                             RcppAnnoy_0.0.20                       
[165] httr_1.4.4                              AnnotationDbi_1.56.2                   
[167] colorspace_2.0-3                        rvest_1.0.3                            
[169] fs_1.5.2                                XML_3.99-0.10                          
[171] tensor_1.5                              umap_0.2.9.0                           
[173] IRanges_2.28.0                          splines_4.1.3                          
[175] uwot_0.1.14                             yulab.utils_0.0.5                      
[177] tidytree_0.4.1                          spatstat.utils_3.0-1                   
[179] graphlayouts_0.8.1                      ggplotify_0.1.0                        
[181] plotly_4.10.1                           xtable_1.8-4                           
[183] jsonlite_1.8.0                          ggtree_3.2.1                           
[185] tidygraph_1.2.2                         ggfun_0.0.8                            
[187] R6_2.5.1                                pillar_1.8.1                           
[189] htmltools_0.5.3                         mime_0.12                              
[191] glue_1.6.2                              fastmap_1.1.0                          
[193] clusterProfiler_4.2.2                   BiocParallel_1.28.3                    
[195] codetools_0.2-18                        ChIPseeker_1.30.3                      
[197] fgsea_1.20.0                            utf8_1.2.2                             
[199] lattice_0.20-45                         spatstat.sparse_3.0-0                  
[201] curl_4.3.2                              leiden_0.4.3                           
[203] gtools_3.9.3                            GO.db_3.14.0                           
[205] openssl_2.0.4                           limma_3.50.3                           
[207] survival_3.4-0                          rmarkdown_2.17                         
[209] munsell_0.5.0                           DO.db_2.9                              
[211] GenomeInfoDbData_1.2.7                  haven_2.5.1                            
[213] reshape2_1.4.4                          gtable_0.3.1                           
[215] coop_0.6-3                              spatstat.core_2.4-4

Thank you!

seurat • 1.9k views
ADD COMMENT
0
Entering edit mode

A Seurat object is a layered object of unequal dimension that cannot easily be converted to a data.frame as a whole. What exactly do you want to convert to a df? The counts? See https://github.com/satijalab/seurat/wiki/Seurat for getters.

ADD REPLY
0
Entering edit mode

No I would like to do analysis with RaceID but I need a dataframe

ADD REPLY
0
Entering edit mode

What exactly do you want to convert to a df?

data.frame of what?

ADD REPLY
0
Entering edit mode

A data.frame is just a data data type, but the important part is what data you need to store in it. RaceID probably gives you what columns it needs in the data.frame, in which case you can coerce your data to match the required input.

ADD REPLY

Login before adding your answer.

Traffic: 2230 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6