Plot heatmap by average based on sample groups
0
1
Entering edit mode
2.1 years ago

Hi,

I am working with ComplexHeatmap to plot heatmaps. Usually, I plot heatmaps based on all individual columns of the data.matrix and color/categorize by associated column annotations. This time I was exploring a way to average samples belonging to each group and plot the heatmap (see example below). Is there a way either in ComplexHeatmap package or any other packages like pheatmap or others?

Perhaps, only way is to average manually, and then plot the data like for instance below plot?

dput(sample_metadata)
structure(list(Groups = c("Control", "Control", "Control", "Treated", 
                          "Treated", "Treated"), Factor = c("A", "B", "A", "B", "A", "B"
                          )), class = "data.frame", row.names = c("C1", "C2", "C3", "C4", 
                                                                  "C5", "C6"))
#>     Groups Factor
#> C1 Control      A
#> C2 Control      B
#> C3 Control      A
#> C4 Treated      B
#> C5 Treated      A
#> C6 Treated      B

column_ha = HeatmapAnnotation(df = data.frame(Groups = sample_metadata$Groups),
                              show_annotation_name = TRUE,
                              col = list(Groups = c('Control' = 'green', 'Treated' = 'brown')),
                              simple_anno_size = unit(1.5, "cm"))

dput(mat)
structure(c(0.740164959138429, -2.4099321614319, -0.659774236619576, 
            1.91950484556249, -0.650192056020683, -1.34086079396285, 0.905902019871148, 
            -2.37012805281368, -2.39964455270247, 0.229088582390984, 0.82424862266824, 
            -1.0219550974085, 0.507758786136239, 2.52898525952656, -0.337321730507543, 
            0.578083299127343, 0.819229800537084, 0.20181490681342, 1.24986388764609, 
            1.30607002214597, 0.31844153675257, -0.470576913255826, 0.385549814425907, 
            -1.21337741920392, -2.04002193751137, -1.08393531546505, -0.770593611498049, 
            -0.480755266166721, -0.798580343529609, -1.45728654517006, -0.132837552127625, 
            -0.657523388272781, -0.362183719051338, 0.147142052910538, -0.610173008121441, 
            0.0930305728786384, 0.739470089578251, 0.234072626585632, -0.74750971036684, 
            0.444774561828359, 0.861126444788902, 1.50797148685585, 0.153805667506553, 
            1.00428105980781, 1.14894021489583, 1.04106231136572, 0.0641890695429588, 
            -0.141144169407476, -0.431139540088279, -1.41529060711872, -0.498739314019377, 
            2.40301450349229, -1.12793345263585, 1.28961670292723, -0.598957876185795, 
            0.363547696086119, 1.3286605371786, 0.447120272367067, -0.61719107273225, 
            -1.06088593762651), dim = c(10L, 6L), dimnames = list(c("R1", 
                                                                    "R2", "R3", "R4", "R5", "R6", "R7", "R8", "R9", "R10"), NULL))
#>           [,1]       [,2]       [,3]        [,4]        [,5]       [,6]
#> R1   0.7401650  0.8242486  0.3184415 -0.13283755  0.86112644 -0.4987393
#> R2  -2.4099322 -1.0219551 -0.4705769 -0.65752339  1.50797149  2.4030145
#> R3  -0.6597742  0.5077588  0.3855498 -0.36218372  0.15380567 -1.1279335
#> R4   1.9195048  2.5289853 -1.2133774  0.14714205  1.00428106  1.2896167
#> R5  -0.6501921 -0.3373217 -2.0400219 -0.61017301  1.14894021 -0.5989579
#> R6  -1.3408608  0.5780833 -1.0839353  0.09303057  1.04106231  0.3635477
#> R7   0.9059020  0.8192298 -0.7705936  0.73947009  0.06418907  1.3286605
#> R8  -2.3701281  0.2018149 -0.4807553  0.23407263 -0.14114417  0.4471203
#> R9  -2.3996446  1.2498639 -0.7985803 -0.74750971 -0.43113954 -0.6171911
#> R10  0.2290886  1.3060700 -1.4572865  0.44477456 -1.41529061 -1.0608859

Heatmap(mat, cluster_rows = F, cluster_columns = F, name = "Abundance", top_annotation = column_ha)

dput(mat.avg)
structure(list(Control = c(0.318441537, -0.470576913, 0.385549814, 
                           -1.213377419, -2.040021938, -1.083935315, -0.770593611, -0.480755266, 
                           -0.798580344, -1.457286545), Treated = c(0.076516526, 1.084487534, 
                                                                    -0.445437168, 0.813679939, -0.020063556, 0.499213527, 0.710773232, 
                                                                    0.180016243, -0.598613441, -0.677133994)), class = "data.frame", row.names = c("R1", 
                                                                                                                                                   "R2", "R3", "R4", "R5", "R6", "R7", "R8", "R9", "R10"))
#>        Control     Treated
#> R1   0.3184415  0.07651653
#> R2  -0.4705769  1.08448753
#> R3   0.3855498 -0.44543717
#> R4  -1.2133774  0.81367994
#> R5  -2.0400219 -0.02006356
#> R6  -1.0839353  0.49921353
#> R7  -0.7705936  0.71077323
#> R8  -0.4807553  0.18001624
#> R9  -0.7985803 -0.59861344
#> R10 -1.4572865 -0.67713399

Heatmap(mat.avg, cluster_rows = F, cluster_columns = F, name = "Avg.Abundance")

Thank you,

Mohammed

pheatmap complexheatmap heatmap ggplot2 R • 1.7k views
ADD COMMENT
1
Entering edit mode

you are probably best off averaging the values separately and then plotting a matrix of those values.

ADD REPLY
0
Entering edit mode

jv OK. Yes, I usually, I try to average the data, then plot. This time I was exploring if there is a much easier way similar to this type of feature is implemented in any package.

ADD REPLY

Login before adding your answer.

Traffic: 3776 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6