Entering edit mode
24 months ago
stan.aanhane
▴
30
Im currently struggling to run a container and execute a command within this container.I'm trying to use NanoSNP (https://github.com/huangnengCSU/NanoSNP), which is an image available from dockerhub. After fulling this docker, the following command would be sufficient to run the the container:
docker run \
-v "${INPUT_DIR}":"${INPUT_DIR}" \
-v "${OUTPUT_DIR}":"${OUTPUT_DIR}" \
--gpus all \ huangnengcsu/nanosnp:v2.1-gpu \ run_caller.sh \
-b "${INPUT_DIR}/input.bam" \
-f "${INPUT_DIR}/reference.fa" \
-t "${THREADS}" \
-c "${COVERAGE}" \
-o "${OUTPUT_DIR}"
What i've been using to start the docker is the following:
docker run snp \
huangnengcsu/nanosnp:v2.1-gpu \
run_caller.sh \
--bam_fn=/home/stanaanhane/anaconda3/envs/SNPcalling/Code_SNP/BRCA1_MAP.sorted.bam \
--ref_fn=/home/stanaanhane/anaconda3/envs/SNPcalling/Code_SNP/BRCA1.fasta \
--output=/home/stanaanhane/anaconda3/envs/SNPcalling/Data \
--threads==10 \
--coverage==1
But when started, I see the docker container starting, but almost directly stop. The docker ps -a
looks like this:
99cd4e272f19 huangnengcsu/nanosnp:v2.1-gpu "/bin/bash" 19 hours ago Exited (0) 18 hours ago snp
446add2244e4 ubuntu "bash" 19 hours ago Exited (137) 18 hours ago festive_kirch
013d00f65681 hello-world "/hello" 23 hours ago Exited (0) 23 hours ago upbeat_cannon
78481d30f8a0 hello-world "/hello" 23 hours ago Exited (0) 23 hours ago loving_mclean
1aba1e8fa496 hello-world "/hello" 23 hours ago Exited (0) 23 hours ago admiring_visvesvaraya
I've tried looking around, but can't find the solution. If anyone has a suggestion, please let me know.
Thanks!
Looks like this requires a GPU to work. Do you have one available on your machine and is it configured for use with docker?
GenoMax I do have an RTX 3050 ti (notebook). But when adding the
-- gpus all
command abovehuangnengcsu/nanosnp:v2.1-gpu \
, it shows the following error code:docker: Error response from daemon: could not select device driver "" with capabilities: [[gpu]]. ERRO[0000] error waiting for container: context canceled
I tried installing the linux GPU driver, but bash shows its not compatible. Im using WSL btw.
This is pretty tricky (trying to use GPU with docker under WSL). I am not a docker expert but it sounds like you will need to do some configuration on docker side to use this
https://stackoverflow.com/questions/70761192/docker-compose-equivalent-of-docker-run-gpu-all-option
It seems like the problem is either one of the two following problems:
sudo apt-get install nvidia-docker2
, it will give me the following error:Unable to locate package nvidia-docker2
The solution (with the needed repository) has migrated on the Nvidia website, so I haven't been able to locate that.
When running
nvidia -smi
it shows the following:+-----------------------------------------------------------------------------+ | NVIDIA-SMI 525.85.05 Driver Version: 528.24 CUDA Version: 12.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA GeForce ... On | 00000000:01:00.0 Off | N/A | | N/A 49C P8 10W / 45W | 220MiB / 4096MiB | 5% Default | | | | N/A | +-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | 0 N/A N/A 27 G /Xwayland N/A | +-----------------------------------------------------------------------------+
This suggests that the GPU is recognised, but when running the benchmark
sudo docker run --rm --gpus all nvidia/cuda:11.6.2-base-ubuntu20.04 nvidia-smi
it shows the following error:
docker: Error response from daemon: could not select device driver "" with capabilities: [[gpu]].
so its either that my GPU is not detected or not compatible (RTX 3050 ti notebook).