Which file and data structure is used to create volcano plot from scRNA-Seq experiment?
0
0
Entering edit mode
22 months ago
Chris ▴ 340

Good morning all,

In RNA-Seq, we use a raw count matrix to create a volcano plot, so which data and how we can generate a volcano plot from a scRNA-Seq experiment? I use Seurat but don't know how to extract the data used as input for EnhancedVolcano(). I don't see the row as gene ID and the column as the cell 😅. Thank you so much!

plot Volcano • 1.4k views
ADD COMMENT
1
Entering edit mode

A Volcano plot visualizes logFC vs -log10p(pvalue). You just need results from a differential analysis. Can you elaborate more which analysis you're doing and which step you're at.

ADD REPLY
0
Entering edit mode

I follow the instruction on several tutorials, to the end of the analysis and use FeaturePlot() to find genes differently express between 2 conditions and want to make VolcanoPlot().

ADD REPLY
1
Entering edit mode

It would be useful if you provide the code you executed to perform the differential analysis, otherwise it is difficult to know the format of the objects you created

ADD REPLY
0
Entering edit mode

I am sorry that it is pretty long but I think it is easier to help answer the question.

install.packages("harmony")
library(harmony)
library(Seurat)
library(ggplot2)
library(tidyverse)
library(gridExtra)


mtx_obj_1 <- ReadMtx(mtx = 'condition_1/matrix.mtx.gz',
                     features = 'condition_1/features.tsv.gz',
                     cells = 'condition_1/barcodes.tsv.gz')

seurat_mtx_con_1 <- CreateSeuratObject(counts = mtx_obj_1, project = 'scRNA_Seq', min.cells = 5)

seurat_mtx_con_1

seurat_mtx_1[['percent.mt']] <- PercentageFeatureSet(seurat_mtx_1, pattern = 'ˆMT-')


seurat_mtx_con_1 <- subset(seurat_mtx_con_1, subset = nCount_RNA < 40000 &
                          nFeature_RNA > 500 &
                          percent.mt <5)

seurat_mtx_con_1 <- NormalizeData(object = seurat_mtx_con_1)

VlnPlot(seurat_mtx_con_1, features = c('nFeature_RNA','nCount_RNA','percent.mt'), ncol = 3) +
  geom_smooth(method = 'lm')

FeatureScatter(seurat_mtx_con_1, feature1 = 'nCount_RNA',feature2 = 'nFeature_RNA') +
  geom_smooth(method = 'lm')

seurat_mtx_con_1 <- FindVariableFeatures(object = seurat_mtx_con_1)

top10 <- head(VariableFeatures(seurat_mtx_NC),10)

plot1 <- VariableFeaturePlot(seurat_mtx_con_1)
LabelPoints(plot = plot1, points = top10, rebel = TRUE)

mtx_obj_con_2 <- ReadMtx(mtx = 'con_2/matrix.mtx.gz',
                      features = 'con_2/features.tsv.gz',
                      cells = 'con_2/barcodes.tsv.gz')

seurat_mtx_con_2 <- CreateSeuratObject(counts = mtx_obj_con_2, project = 'CV', min.cells = 5)

seurat_mtx_con_2[['percent.mt']] <- PercentageFeatureSet(seurat_mtx_con_2, pattern = 'ˆMT-')

seurat_mtx_con_2 <- subset(seurat_mtx_con_2, subset = nCount_RNA < 40000 &
                          nFeature_RNA > 500 &
                          percent.mt <5)

seurat_mtx_con_2 <- NormalizeData(object = seurat_mtx_con_2)

VlnPlot(seurat_mtx_con_2, features = c('nFeature_RNA','nCount_RNA','percent.mt'), ncol = 3) +
  geom_smooth(method = 'lm')

FeatureScatter(seurat_mtx_con_2, feature1 = 'nCount_RNA',feature2 = 'nFeature_RNA') +
  geom_smooth(method = 'lm')

seurat_mtx_con_2 <- FindVariableFeatures(object = seurat_mtx_con_2)

merged_seurat <- merge(seurat_mtx_con_1, y = c(seurat_mtx_con_2),
                       add.cell.ids = c('con_1','con_2'),
                       project = 'scRNA_Seq')

merged_seurat$sample <- rownames(merged_seurat@meta.data)

merged_seurat@meta.data <- separate(merged_seurat@meta.data, col = 'sample', into = c('condition','Barcode'),
                                    sep = '_')

merged_seurat <- FindVariableFeatures(merged_seurat)

merged_seurat <- ScaleData(merged_seurat)

merged_seurat <- RunPCA(merged_seurat)

merged_seurat <- RunUMAP(merged_seurat, reduction = "pca", dims = 1:20)

merged_seurat <- FindNeighbors(merged_seurat, reduction = "pca", dims = 1:20)

merged_seurat <- FindClusters(merged_seurat, resolution = 0.5)

ElbowPlot(merged_seurat)

merged_seurat@meta.data$condition_1 <- merged_seurat@meta.data$condition

before <- DimPlot(merged_seurat, reduction = 'umap', group.by = 'condition')
before

CV.harmony <- merged_seurat %>%
  RunHarmony(group.by.vars = 'condition', plot_convergence = F)

CV.harmony$nCount_RNA

CV.harmony@meta.data <- unite(CV.harmony@meta.data, "condition_cluster", condition_1, seurat_clusters, sep = "_")

CV.harmony@reductions

CV.harmony.embed <- Embeddings(CV.harmony,'harmony')
CV.harmony.embed[1:10,1:10]

CV.harmony <- CV.harmony %>%
  RunUMAP(reduction = 'harmony', dims = 1:20) %>%
  FindNeighbors(reduction = 'harmony', dims = 1:20) %>%
  FindClusters(resolution = 0.5)

after <- DimPlot(CV.harmony, reduction = 'umap', group.by = 'condition')
before|after

cluster <- DimPlot(CV.harmony, reduction = 'umap', group.by = 'seurat_clusters', label = T)
condition <- DimPlot(CV.harmony, reduction = 'umap', group.by = 'condition')
condition|cluster

Idents(CV.harmony) <- CV.harmony$condition_cluster

CV.markers <-  FindAllMarkers(CV.harmony,
                              logfc.threshold = 0.25,
                              min.pct = 0.1,
                              only.pos = F)

EnhancedVolcano(?, x = "log2FoldChange", y = "padj", lab = ?,
                pCutoff = 1e-4, FCcutoff = 1)
ADD REPLY
1
Entering edit mode
EnhancedVolcano(CV.markers, x = "avg_log2FC", y = "p_val", lab =   rownames(CV.markers),
                pCutoff = 1e-4, FCcutoff = 1)

"p_val" for nominal p-values but "p_val_adj" could be used for adjusted p-values

ADD REPLY
0
Entering edit mode

Thank you for your help! I got an error that I could not find the solution on the Internet:

library(EnhancedVolcano)

Loading required package: ggrepel Error in value[3L] : Package ‘ggrepel’ version 0.9.2 cannot be unloaded: Error in unloadNamespace(package) : namespace ‘ggrepel’ is imported by ‘Seurat’ so cannot be unloaded

Could you have a suggestion?

Update. I figured it out.

ADD REPLY

Login before adding your answer.

Traffic: 1832 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6