How to calculate the false discovery proportion from the p-value histogram?
0
3
Entering edit mode
19 months ago
Dan ▴ 180

I read the textbook https://web.stanford.edu/class/bios221/book/06-chap.html about the false discovery proportion and the p-value histogram.

library("DESeq2")
library("airway")
data("airway")
aw   = DESeqDataSet(se = airway, design = ~ cell + dex)
aw   = DESeq(aw)
awde = as.data.frame(results(aw)) |> dplyr::filter(!is.na(pvalue))

alpha = binw = 0.025
pi0 = 2 * mean(awde$pvalue > 0.5)
ggplot(awde,
  aes(x = pvalue)) + geom_histogram(binwidth = binw, boundary = 0) +
  geom_hline(yintercept = pi0 * binw * nrow(awde), col = "blue") +
  geom_vline(xintercept = alpha, col = "red")

enter image description here

I do not understand why the false discovery proportion is calculated with

pi0 = 2 * mean(awde$pvalue > 0.5)
pi0 * binw * nrow(awde)

Thanks

false-discovery-rate • 417 views
ADD COMMENT

Login before adding your answer.

Traffic: 2424 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6