Converting scMultiome data to loom using SEURAT
0
0
Entering edit mode
14 months ago

I'm using scMultiom data with the CCAF tool to predict cell cycle phases. CCAF : https://github.com/plaisier-lab/ccAF CCAF requires a loom file as input. I converted the output h5 file from cellranger-arc and atac_fragment.tsv.gz to a loom file using Seurat's code.

library(Seurat)

library(Signac) library(EnsDb.Hsapiens.v86) library(dplyr) library(ggplot2) library(SeuratDisk)

the 10x hdf5 file contains both data types.

inputdata.10x <- Read10X_h5("D:/Halima's Data/Thesis_2/1_GD428_21136_Hu_REH_Parental/outs/filtered_feature_bc_matrix.h5")

extract RNA and ATAC data

rna_counts <- inputdata.10x$Gene Expression atac_counts <- inputdata.10x$Peaks

Create Seurat object

pbmc <- CreateSeuratObject(counts = rna_counts) pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")

Now add in the ATAC-seq data

we'll only use peaks in standard chromosomes

grange.counts <- StringToGRanges(rownames(atac_counts), sep = c(":", "-")) grange.use <- seqnames(grange.counts) %in% standardChromosomes(grange.counts) atac_counts <- atac_counts[as.vector(grange.use), ] annotations <- GetGRangesFromEnsDb(ensdb = EnsDb.Hsapiens.v86) seqlevelsStyle(annotations) <- 'UCSC' genome(annotations) <- "hg38"

frag.file <- "D:/Halima's Data/Thesis_2/1_GD428_21136_Hu_REH_Parental/outs/atac_fragments.tsv.gz" chrom_assay <- CreateChromatinAssay( counts = atac_counts, sep = c(":", "-"), genome = 'hg38', fragments = frag.file, min.cells = 10, annotation = annotations ) pbmc[["ATAC"]] <- chrom_assay

pbmc <- subset( x = pbmc, subset = nCount_ATAC < 7e4 & nCount_ATAC > 5e3 & nCount_RNA < 25000 & nCount_RNA > 1000 & percent.mt < 20 )

RNA analysis

DefaultAssay(pbmc) <- "RNA" pbmc <- SCTransform(pbmc, verbose = FALSE) %>% RunPCA() %>% RunUMAP(dims = 1:50, reduction.name = 'umap.rna', reduction.key = 'rnaUMAP_')

ATAC analysis

We exclude the first dimension as this is typically correlated with sequencing depth

DefaultAssay(pbmc) <- "ATAC" pbmc <- RunTFIDF(pbmc) pbmc <- FindTopFeatures(pbmc, min.cutoff = 'q0') pbmc <- RunSVD(pbmc) pbmc <- RunUMAP(pbmc, reduction = 'lsi', dims = 2:50, reduction.name = "umap.atac", reduction.key = "atacUMAP_")

pbmc <- FindMultiModalNeighbors(pbmc, reduction.list = list("pca", "lsi"), dims.list = list(1:50, 2:50)) pbmc <- RunUMAP(pbmc, nn.name = "weighted.nn", reduction.name = "wnn.umap", reduction.key = "wnnUMAP_") pbmc <- FindClusters(pbmc, graph.name = "wsnn", algorithm = 3, verbose = FALSE)

5. Convert the Seurat object to a .loom file

Convert the Seurat object to a .loom file

reh.loom <- as.loom(pbmc, filename = "./output_reh_4.loom")

However, the resulting loom file seems corrupted and won't open in Python, even after multiple attempts. I even consulted ChatGPT, but the issue persists. Any assistance would be appreciated.

import scanpy as sc

3. Load up data

Load up loom file

print('\nLoading REH loom data...') adata3 = sc.read_loom("D:/Halima's Data/Thesis_2/RCode/output_reh_4.loom")

File h5py_objects.pyx:54, in h5py._objects.with_phil.wrapper()

File h5py_objects.pyx:55, in h5py._objects.with_phil.wrapper()

File h5py\h5f.pyx:106, in h5py.h5f.open()

OSError: Unable to open file (file signature not found)

How do I get the loom file so that I can read it on python code?

scMultiome CCAF Seurat • 876 views
ADD COMMENT
1
Entering edit mode

Might not be that to cause the corruption, but (from docu) ... Always remember to close loom files when done....pbmc.loom$close_all() .

ADD REPLY
0
Entering edit mode

Thanks !!! That worked!

ADD REPLY

Login before adding your answer.

Traffic: 1865 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6