Obtain expression data for the specific genes on integrated seurat project
0
0
Entering edit mode
10 months ago
gdfsnkfns • 0

Hello, everyone.

I'm conducting Seurat analysis for GSE-deposited scRNA seq data. I performed integration of multiple data set (by "IntegrateData") and proceeded to gene expression profiling of each Seurat cluster for cell type annotation, but the following error message was appeared...

Tcell_markers<-c("CD4","CD8A","FOXP3") AverageExpression(My_integrated_data, group.by = "seurat_clusters", features=Tcell_markers ,verbose=FALSE)$RNA Warning: None of the features specified were found in the RNA assay. Warning: The following 3 features were not found in the integrated assay: CD4, CD8A, FOXP3 Warning: None of the features specified were found in the integrated assay. NULL

Curiously, when I run the same script last month, I could get proper results....

Scripts I used for data integration was following; Merged_data<-merge(P1,y=c(P10,P11,P12,P13,P14,P15,P16,P17,P18,P19,P2,P20,P21,P22,P23,P24,P25,P26,P27,P28,P29,P3,P30,P31,P32,P33,P34,P35,P36,P37,P38,P39,P4,P40,P41,P42,P5,P6,P7,P8,P9),add.cell.ids = ls()[1:42],project = "Merged_data")

(※ P1,P2,,,: Seurat objects)

Merged_data<-subset(Merged_data ,subset = nFeature_RNA>200 & nFeature_RNA<5000 & nCount_RNA<30000 & percent.mt<30

Merged_data.list<-SplitObject(Merged_data, split.by = "orig.ident")

Merged_data.list <- lapply(X = Merged_data.list, FUN = function(x) { x <- NormalizeData(x) x <- FindVariableFeatures(x, verbose=FALSE) })

features <- SelectIntegrationFeatures(object.list = Merged_data.list)

Merged_data.list <- lapply(X = Merged_data.list, FUN = function(x) { x <- ScaleData(x,features=features,verbose=FALSE) x <- RunPCA(x,features=features,verbose=FALSE) })

Merged_data.anchors <- FindIntegrationAnchors(object.list = Merged_data.list,reduction="rpca",dims=1:50)

My_integrated_data <- IntegrateData(anchorset = Merged_data.anchors,dims=1:50)

My_integrated_data <- ScaleData(My_integrated_data verbose = FALSE) My_integrated_data <- RunPCA(My_integrated_data, verbose = FALSE) My_integrated_data<- FindNeighbors(My_integrated_data,reduction="pca",dims=1:30) My_integrated_data<- FindClusters(My_integrated_data,resolution=0.3) My_integrated_data<- RunUMAP(My_integrated_data, reduction="pca",dims = 1:30)

If anyone knows of a solution, I would appreciate it if you could let us know.

Thank you.

scRNA-seq Seurat • 220 views
ADD COMMENT

Login before adding your answer.

Traffic: 2729 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6